Step
*
3
1
2
1
of Lemma
longest-prefix_property'
1. T : Type
2. u : T
3. P : T List+ ⟶ 𝔹
4. [] ≤ []
5. [] < [] supposing 0 < 0
6. (([] = [] ∈ (T List)) ∧ (∀L':T List. ([] < L'
⇒ L' < []
⇒ (¬↑(P [u / L'])))))
∨ (0 < 0 ∧ (↑(P [u])) ∧ (∀L':T List. ([] < L'
⇒ L' < []
⇒ (¬↑(P [u / L'])))))
7. [] ≤ [u]
8. [] < [u] supposing 0 < 1
9. [] = [] ∈ (T List)
10. L' : T List
11. [] < L'
12. L' < [u]
⊢ ¬↑(P L')
BY
{ (((InstLemma `proper-iseg-length` [⌜T⌝;⌜L'⌝;⌜[u]⌝]⋅ THEN Auto') THEN ThinTrivial THEN Auto')⋅
THEN ((InstLemma `proper-iseg-length` [⌜T⌝;⌜[]⌝;⌜L'⌝]⋅ THEN Auto') THEN ThinTrivial THEN Auto')⋅
)⋅ }
Latex:
Latex:
1. T : Type
2. u : T
3. P : T List\msupplus{} {}\mrightarrow{} \mBbbB{}
4. [] \mleq{} []
5. [] < [] supposing 0 < 0
6. (([] = []) \mwedge{} (\mforall{}L':T List. ([] < L' {}\mRightarrow{} L' < [] {}\mRightarrow{} (\mneg{}\muparrow{}(P [u / L'])))))
\mvee{} (0 < 0 \mwedge{} (\muparrow{}(P [u])) \mwedge{} (\mforall{}L':T List. ([] < L' {}\mRightarrow{} L' < [] {}\mRightarrow{} (\mneg{}\muparrow{}(P [u / L'])))))
7. [] \mleq{} [u]
8. [] < [u] supposing 0 < 1
9. [] = []
10. L' : T List
11. [] < L'
12. L' < [u]
\mvdash{} \mneg{}\muparrow{}(P L')
By
Latex:
(((InstLemma `proper-iseg-length` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}L'\mkleeneclose{};\mkleeneopen{}[u]\mkleeneclose{}]\mcdot{} THEN Auto') THEN ThinTrivial THEN Auto')\mcdot{}
THEN ((InstLemma `proper-iseg-length` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}[]\mkleeneclose{};\mkleeneopen{}L'\mkleeneclose{}]\mcdot{} THEN Auto') THEN ThinTrivial THEN Auto')\mcdot{}
)\mcdot{}
Home
Index