Step
*
3
2
3
1
of Lemma
longest-prefix_property'
1. [T] : Type
2. L : T
3. L1 : T List
4. P : T List+ ⟶ 𝔹
5. u : T
6. v : T List
7. [u / v] ≤ L1
8. [u / v] < L1 supposing 0 < ||L1||
9. 0 < ||v|| + 1
10. (↑(P [L; [u / v]])) ∧ (∀L':T List. ([u / v] < L'
⇒ L' < L1
⇒ (¬↑(P [L / L']))))
11. [L; [u / v]] ≤ [L / L1]
12. [L; [u / v]] < [L / L1] supposing 0 < ||L1|| + 1
⊢ 0 < (||v|| + 1) + 1 ∧ (↑(P [L; [u / v]])) ∧ (∀L':T List. ([L; [u / v]] < L'
⇒ L' < [L / L1]
⇒ (¬↑(P L'))))
BY
{ (Auto
THEN D -3
THEN Try (((InstLemma `proper-iseg-length` [⌜T⌝;⌜[L; [u / v]]⌝;⌜[]⌝]⋅ THEN Auto')
THEN ThinTrivial
THEN Complete (Auto'))⋅))⋅ }
1
1. T : Type
2. L : T
3. L1 : T List
4. P : T List+ ⟶ 𝔹
5. u : T
6. v : T List
7. [u / v] ≤ L1
8. [u / v] < L1 supposing 0 < ||L1||
9. 0 < ||v|| + 1
10. ↑(P [L; [u / v]])
11. ∀L':T List. ([u / v] < L'
⇒ L' < L1
⇒ (¬↑(P [L / L'])))
12. [L; [u / v]] ≤ [L / L1]
13. [L; [u / v]] < [L / L1] supposing 0 < ||L1|| + 1
14. 0 < (||v|| + 1) + 1
15. ↑(P [L; [u / v]])
16. u1 : T
17. v1 : T List
18. [L; [u / v]] < [u1 / v1]
19. [u1 / v1] < [L / L1]
⊢ ¬↑(P [u1 / v1])
Latex:
Latex:
1. [T] : Type
2. L : T
3. L1 : T List
4. P : T List\msupplus{} {}\mrightarrow{} \mBbbB{}
5. u : T
6. v : T List
7. [u / v] \mleq{} L1
8. [u / v] < L1 supposing 0 < ||L1||
9. 0 < ||v|| + 1
10. (\muparrow{}(P [L; [u / v]])) \mwedge{} (\mforall{}L':T List. ([u / v] < L' {}\mRightarrow{} L' < L1 {}\mRightarrow{} (\mneg{}\muparrow{}(P [L / L']))))
11. [L; [u / v]] \mleq{} [L / L1]
12. [L; [u / v]] < [L / L1] supposing 0 < ||L1|| + 1
\mvdash{} 0 < (||v|| + 1) + 1
\mwedge{} (\muparrow{}(P [L; [u / v]]))
\mwedge{} (\mforall{}L':T List. ([L; [u / v]] < L' {}\mRightarrow{} L' < [L / L1] {}\mRightarrow{} (\mneg{}\muparrow{}(P L'))))
By
Latex:
(Auto
THEN D -3
THEN Try (((InstLemma `proper-iseg-length` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}[L; [u / v]]\mkleeneclose{};\mkleeneopen{}[]\mkleeneclose{}]\mcdot{} THEN Auto')
THEN ThinTrivial
THEN Complete (Auto'))\mcdot{}))\mcdot{}
Home
Index