Step
*
1
of Lemma
longest-prefix_property2
1. [T] : Type
2. L : T List
3. P : (T List) ⟶ 𝔹
4. longest-prefix(P;L) ≤ L
5. longest-prefix(P;L) < L supposing 0 < ||L||
6. ((longest-prefix(P;L) = [] ∈ (T List)) ∧ (∀L':T List. (L' < L
⇒ (¬↑(P L')))))
∨ ((↑(P longest-prefix(P;L))) ∧ (∀L':T List. (longest-prefix(P;L) < L'
⇒ L' < L
⇒ (¬↑(P L')))))
7. L2 : T List
8. L = (longest-prefix(P;L) @ L2) ∈ (T List)
⊢ 0 < ||L2|| supposing 0 < ||L||
BY
{ ParallelOp (-4) }
1
1. T : Type
2. L : T List
3. P : (T List) ⟶ 𝔹
4. longest-prefix(P;L) ≤ L
5. ((longest-prefix(P;L) = [] ∈ (T List)) ∧ (∀L':T List. (L' < L
⇒ (¬↑(P L')))))
∨ ((↑(P longest-prefix(P;L))) ∧ (∀L':T List. (longest-prefix(P;L) < L'
⇒ L' < L
⇒ (¬↑(P L')))))
6. L2 : T List
7. L = (longest-prefix(P;L) @ L2) ∈ (T List)
8. 0 < ||L||
9. longest-prefix(P;L) < L
⊢ 0 < ||L2||
Latex:
Latex:
1. [T] : Type
2. L : T List
3. P : (T List) {}\mrightarrow{} \mBbbB{}
4. longest-prefix(P;L) \mleq{} L
5. longest-prefix(P;L) < L supposing 0 < ||L||
6. ((longest-prefix(P;L) = []) \mwedge{} (\mforall{}L':T List. (L' < L {}\mRightarrow{} (\mneg{}\muparrow{}(P L')))))
\mvee{} ((\muparrow{}(P longest-prefix(P;L))) \mwedge{} (\mforall{}L':T List. (longest-prefix(P;L) < L' {}\mRightarrow{} L' < L {}\mRightarrow{} (\mneg{}\muparrow{}(P L')))))
7. L2 : T List
8. L = (longest-prefix(P;L) @ L2)
\mvdash{} 0 < ||L2|| supposing 0 < ||L||
By
Latex:
ParallelOp (-4)
Home
Index