Step
*
1
2
of Lemma
longest-prefix_property
1. [T] : Type
2. u : T
3. P : (T List) ⟶ 𝔹
4. [] ≤ []
5. [] < [] supposing 0 < 0
6. (([] = [] ∈ (T List)) ∧ (∀L':T List. (L' < []
⇒ (¬↑(P [u / L'])))))
∨ ((↑(P [u])) ∧ (∀L':T List. ([] < L'
⇒ L' < []
⇒ (¬↑(P [u / L'])))))
7. [] ≤ [u]
8. [] < [u] supposing 0 < 1
⊢ (([] = [] ∈ (T List)) ∧ (∀L':T List. (L' < [u]
⇒ (¬↑(P L')))))
∨ ((↑(P [])) ∧ (∀L':T List. ([] < L'
⇒ L' < [u]
⇒ (¬↑(P L')))))
BY
{ (AutoBoolCase ⌜P []⌝⋅ THEN Auto THEN Try ((OrRight THEN Auto))) }
1
1. T : Type
2. u : T
3. P : (T List) ⟶ 𝔹
4. [] ≤ []
5. [] < [] supposing 0 < 0
6. (([] = [] ∈ (T List)) ∧ (∀L':T List. (L' < []
⇒ (¬↑(P [u / L'])))))
∨ ((↑(P [u])) ∧ (∀L':T List. ([] < L'
⇒ L' < []
⇒ (¬↑(P [u / L'])))))
7. [] ≤ [u]
8. [] < [u] supposing 0 < 1
9. ↑(P [])
10. True
11. L' : T List
12. [] < L'
13. L' < [u]
⊢ ¬↑(P L')
2
1. T : Type
2. u : T
3. P : (T List) ⟶ 𝔹
4. ¬↑(P [])
5. [] ≤ []
6. [] < [] supposing 0 < 0
7. (([] = [] ∈ (T List)) ∧ (∀L':T List. (L' < []
⇒ (¬↑(P [u / L'])))))
∨ ((↑(P [u])) ∧ (∀L':T List. ([] < L'
⇒ L' < []
⇒ (¬↑(P [u / L'])))))
8. [] ≤ [u]
9. [] < [u] supposing 0 < 1
10. [] = [] ∈ (T List)
11. L' : T List
12. L' < [u]
⊢ ¬↑(P L')
Latex:
Latex:
1. [T] : Type
2. u : T
3. P : (T List) {}\mrightarrow{} \mBbbB{}
4. [] \mleq{} []
5. [] < [] supposing 0 < 0
6. (([] = []) \mwedge{} (\mforall{}L':T List. (L' < [] {}\mRightarrow{} (\mneg{}\muparrow{}(P [u / L'])))))
\mvee{} ((\muparrow{}(P [u])) \mwedge{} (\mforall{}L':T List. ([] < L' {}\mRightarrow{} L' < [] {}\mRightarrow{} (\mneg{}\muparrow{}(P [u / L'])))))
7. [] \mleq{} [u]
8. [] < [u] supposing 0 < 1
\mvdash{} (([] = []) \mwedge{} (\mforall{}L':T List. (L' < [u] {}\mRightarrow{} (\mneg{}\muparrow{}(P L')))))
\mvee{} ((\muparrow{}(P [])) \mwedge{} (\mforall{}L':T List. ([] < L' {}\mRightarrow{} L' < [u] {}\mRightarrow{} (\mneg{}\muparrow{}(P L')))))
By
Latex:
(AutoBoolCase \mkleeneopen{}P []\mkleeneclose{}\mcdot{} THEN Auto THEN Try ((OrRight THEN Auto)))
Home
Index