Step
*
1
of Lemma
member-residues-mod
.....assertion.....
1. n : ℕ
2. x : {k:ℕn| CoPrime(n,k)}
⊢ filter(λi.(gcd(n;i) =z 1);upto(n)) ∈ {k:ℕn| CoPrime(n,k)} List
BY
{ xxx((InstLemma `filter_type` [⌜ℕn⌝;⌜λi.(gcd(n;i) =z 1)⌝;⌜upto(n)⌝]⋅ THENA Auto)
THEN Reduce (-1)
THEN DoSubsume
THEN Auto
THEN SubtypeReasoning
THEN Auto)xxx }
1
1. n : ℕ
2. x : {k:ℕn| CoPrime(n,k)}
3. filter(λi.(gcd(n;i) =z 1);upto(n)) ∈ {x:ℕn| ↑(gcd(n;x) =z 1)} List
4. filter(λi.(gcd(n;i) =z 1);upto(n)) = filter(λi.(gcd(n;i) =z 1);upto(n)) ∈ ({x:ℕn| ↑(gcd(n;x) =z 1)} List)
5. x1 : ℕn
6. ↑(gcd(n;x1) =z 1)
⊢ CoPrime(n,x1)
Latex:
Latex:
.....assertion.....
1. n : \mBbbN{}
2. x : \{k:\mBbbN{}n| CoPrime(n,k)\}
\mvdash{} filter(\mlambda{}i.(gcd(n;i) =\msubz{} 1);upto(n)) \mmember{} \{k:\mBbbN{}n| CoPrime(n,k)\} List
By
Latex:
xxx((InstLemma `filter\_type` [\mkleeneopen{}\mBbbN{}n\mkleeneclose{};\mkleeneopen{}\mlambda{}i.(gcd(n;i) =\msubz{} 1)\mkleeneclose{};\mkleeneopen{}upto(n)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Reduce (-1)
THEN DoSubsume
THEN Auto
THEN SubtypeReasoning
THEN Auto)xxx
Home
Index