Step
*
1
1
of Lemma
non-forking-wellfounded-linorder
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. decidable-non-minimal(T;x,y.R[x;y])
4. WellFnd{i}(T;x,y.R[x;y])
5. m : T
6. unique-minimal(T;x,y.R[x;y];m)
7. non-forking(T;x,y.R[x;y])
8. ∀y:T. (↓m ((λx,y. R[x;y])^*) y)
9. Order(T;x,y.x (R^*) y)
10. x : T
11. y : T
12. m ((λx,y. R[x;y])^*) x
13. m ((λx,y. R[x;y])^*) y
⊢ (x (R^*) y) ∨ (y (R^*) x)
BY
{ xxx(xxx((Assert m (R^*) x BY
(NthHypEq (-2) THEN RepeatFor 2 ((EqCD THEN Auto)) THEN RepeatFor 2 ((Ext THEN Auto))))
THEN Thin (-3)
)xxx
THEN xxx((Assert m (R^*) y BY
(NthHypEq (-2) THEN RepeatFor 2 ((EqCD THEN Auto)) THEN RepeatFor 2 ((Ext THEN Auto))))
THEN Thin (-3)
)xxx
)xxx }
1
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. decidable-non-minimal(T;x,y.R[x;y])
4. WellFnd{i}(T;x,y.R[x;y])
5. m : T
6. unique-minimal(T;x,y.R[x;y];m)
7. non-forking(T;x,y.R[x;y])
8. ∀y:T. (↓m ((λx,y. R[x;y])^*) y)
9. Order(T;x,y.x (R^*) y)
10. x : T
11. y : T
12. m (R^*) x
13. m (R^*) y
⊢ (x (R^*) y) ∨ (y (R^*) x)
Latex:
Latex:
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. decidable-non-minimal(T;x,y.R[x;y])
4. WellFnd\{i\}(T;x,y.R[x;y])
5. m : T
6. unique-minimal(T;x,y.R[x;y];m)
7. non-forking(T;x,y.R[x;y])
8. \mforall{}y:T. (\mdownarrow{}m rel\_star(T; \mlambda{}x,y. R[x;y]) y)
9. Order(T;x,y.x rel\_star(T; R) y)
10. x : T
11. y : T
12. m rel\_star(T; \mlambda{}x,y. R[x;y]) x
13. m rel\_star(T; \mlambda{}x,y. R[x;y]) y
\mvdash{} (x rel\_star(T; R) y) \mvee{} (y rel\_star(T; R) x)
By
Latex:
xxx(xxx((Assert m rel\_star(T; R) x BY
(NthHypEq (-2)
THEN RepeatFor 2 ((EqCD THEN Auto))
THEN RepeatFor 2 ((Ext THEN Auto))))
THEN Thin (-3)
)xxx
THEN xxx((Assert m rel\_star(T; R) y BY
(NthHypEq (-2)
THEN RepeatFor 2 ((EqCD THEN Auto))
THEN RepeatFor 2 ((Ext THEN Auto))))
THEN Thin (-3)
)xxx
)xxx
Home
Index