Nuprl Lemma : p-first-append

[A,B:Type]. ∀[L1,L2:(A ⟶ (B Top)) List].
  (p-first(L1 L2) p-first([p-first(L1); p-first(L2)]) ∈ (A ⟶ (B Top)))


Proof




Definitions occuring in Statement :  p-first: p-first(L) append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-first: p-first(L) subtype_rel: A ⊆B uimplies: supposing a top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True
Lemmas referenced :  list_accum_append subtype_rel_list top_wf list_accum_cons_lemma list_accum_nil_lemma list_accum_wf equal_wf list_induction all_wf list_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality hypothesisEquality hypothesis because_Cache sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality extract_by_obid applyEquality functionEquality unionEquality independent_isectElimination lambdaEquality voidElimination voidEquality dependent_functionElimination inrEquality equalityTransitivity equalitySymmetry lambdaFormation unionElimination inlEquality independent_functionElimination rename universeEquality imageElimination equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A,B:Type].  \mforall{}[L1,L2:(A  {}\mrightarrow{}  (B  +  Top))  List].
    (p-first(L1  @  L2)  =  p-first([p-first(L1);  p-first(L2)]))



Date html generated: 2019_10_15-AM-11_08_52
Last ObjectModification: 2018_08_21-PM-01_59_12

Theory : general


Home Index