Nuprl Lemma : peval_wf

[x:formula()]. ∀[v0:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹].  (peval(v0;x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  peval: peval(v0;x) psub: a ⊆ b pvar?: pvar?(v) formula: formula() assert: b bool: 𝔹 uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T peval: peval(v0;x) subtype_rel: A ⊆B and: P ∧ Q prop: all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  valuation-exists-ext formula_wf psub_wf assert_wf pvar?_wf bool_wf psub_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality thin instantiate extract_by_obid hypothesis because_Cache sqequalHypSubstitution hypothesisEquality functionExtensionality setEquality productEquality isectElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality dependent_set_memberEquality dependent_functionElimination independent_isectElimination

Latex:
\mforall{}[x:formula()].  \mforall{}[v0:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}].    (peval(v0;x)  \mmember{}  \mBbbB{})



Date html generated: 2018_05_21-PM-08_54_27
Last ObjectModification: 2018_05_19-PM-05_07_05

Theory : general


Home Index