Nuprl Lemma : peval_wf
∀[x:formula()]. ∀[v0:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹].  (peval(v0;x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
peval: peval(v0;x)
, 
psub: a ⊆ b
, 
pvar?: pvar?(v)
, 
formula: formula()
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
peval: peval(v0;x)
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
valuation-exists-ext, 
formula_wf, 
psub_wf, 
assert_wf, 
pvar?_wf, 
bool_wf, 
psub_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
hypothesisEquality, 
functionExtensionality, 
setEquality, 
productEquality, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}[x:formula()].  \mforall{}[v0:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}].    (peval(v0;x)  \mmember{}  \mBbbB{})
Date html generated:
2018_05_21-PM-08_54_27
Last ObjectModification:
2018_05_19-PM-05_07_05
Theory : general
Home
Index