Nuprl Lemma : proof-tree-induction-ext
∀[Sequent,Rule:Type].
  ∀effect:(Sequent × Rule) ⟶ (Sequent List?)
    ∀[Q:proof-tree(Sequent;Rule;effect) ⟶ ℙ]
      ((∀s:Sequent. ∀r:Rule.  Q[proof-abort(s;r)] supposing ↑isr(effect <s, r>))
      ⇒ (∀s:Sequent. ∀r:Rule.
            ∀L:proof-tree(Sequent;Rule;effect) List
              (∀pf∈L.Q[pf]) ⇒ Q[make-proof-tree(s;r;L)] supposing ||L|| = ||outl(effect <s, r>)|| ∈ ℤ 
            supposing ↑isl(effect <s, r>))
      ⇒ (∀pf:proof-tree(Sequent;Rule;effect). Q[pf]))
Proof
Definitions occuring in Statement : 
proof-abort: proof-abort(s;r), 
make-proof-tree: make-proof-tree(s;r;L), 
proof-tree: proof-tree(Sequent;Rule;effect), 
l_all: (∀x∈L.P[x]), 
length: ||as||, 
list: T List, 
outl: outl(x), 
assert: ↑b, 
isr: isr(x), 
isl: isl(x), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
pair: <a, b>, 
product: x:A × B[x], 
union: left + right, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
proof_tree_ind: proof_tree_ind(effect;abort;progress;pf), 
proof-tree-induction, 
W-induction, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
top: Top, 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
proof-tree-induction, 
lifting-strict-spread, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
top_wf, 
equal_wf, 
lifting-strict-decide, 
W-induction
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueApply, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
inlFormation, 
because_Cache, 
sqequalSqle, 
divergentSqle, 
callbyvalueSpread, 
productEquality, 
productElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
spreadExceptionCases, 
axiomSqleEquality, 
exceptionSqequal
Latex:
\mforall{}[Sequent,Rule:Type].
    \mforall{}effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)
        \mforall{}[Q:proof-tree(Sequent;Rule;effect)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}s:Sequent.  \mforall{}r:Rule.    Q[proof-abort(s;r)]  supposing  \muparrow{}isr(effect  <s,  r>))
            {}\mRightarrow{}  (\mforall{}s:Sequent.  \mforall{}r:Rule.
                        \mforall{}L:proof-tree(Sequent;Rule;effect)  List
                            (\mforall{}pf\mmember{}L.Q[pf])  {}\mRightarrow{}  Q[make-proof-tree(s;r;L)]  supposing  ||L||  =  ||outl(effect  <s,  r>)|| 
                        supposing  \muparrow{}isl(effect  <s,  r>))
            {}\mRightarrow{}  (\mforall{}pf:proof-tree(Sequent;Rule;effect).  Q[pf]))
Date html generated:
2018_05_21-PM-06_28_50
Last ObjectModification:
2018_05_19-PM-04_40_00
Theory : general
Home
Index