Step
*
of Lemma
rel-immediate-rel-plus
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. (SWellFounded(R x y)
⇒ (∀x,y:T. Dec(∃z:T. ((R x z) ∧ (R z y))))
⇒ R+ => R!+)
BY
{ xxx(Auto
THEN D -2
THEN RepUR ``rel_implies rel_plus infix_ap`` 0
THEN Assert ⌜∀n:ℕ. (0 < n
⇒ (∀x,y:T. ((R^n x y)
⇒ (∃n:ℕ+. (R!^n x y)))))⌝⋅
THEN Try ((Auto THEN ExRepD THEN Using [`n',⌜n⌝] (BackThruSomeHyp)⋅ THEN Complete (Auto'))))xxx }
1
.....assertion.....
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. f : T ⟶ ℕ
4. ∀x,y:T. ((R x y)
⇒ f x < f y)
5. ∀x,y:T. Dec(∃z:T. ((R x z) ∧ (R z y)))
⊢ ∀n:ℕ. (0 < n
⇒ (∀x,y:T. ((R^n x y)
⇒ (∃n:ℕ+. (R!^n x y)))))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
(SWellFounded(R x y) {}\mRightarrow{} (\mforall{}x,y:T. Dec(\mexists{}z:T. ((R x z) \mwedge{} (R z y)))) {}\mRightarrow{} R\msupplus{} => R!\msupplus{})
By
Latex:
xxx(Auto
THEN D -2
THEN RepUR ``rel\_implies rel\_plus infix\_ap`` 0
THEN Assert \mkleeneopen{}\mforall{}n:\mBbbN{}
(0 < n {}\mRightarrow{} (\mforall{}x,y:T. ((R\^{}n x y) {}\mRightarrow{} (\mexists{}n:\mBbbN{}\msupplus{}. (R!\^{}n x y)))))\mkleeneclose{}\mcdot{}
THEN Try ((Auto THEN ExRepD THEN Using [`n',\mkleeneopen{}n\mkleeneclose{}] (BackThruSomeHyp)\mcdot{} THEN Complete (Auto'))))xxx
Home
Index