Step
*
2
1
of Lemma
rel-is-immediate
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. ((R+ x y)
⇒ (¬(R+ y x)))
4. ∀a,b,c:T. (((R a b) ∧ (R a c))
⇒ (b = c ∈ T))
5. x : T
6. y : T
7. n : ℤ
8. 0 < n
9. x R^n y
10. ∀z:T. (¬((∃n:ℕ+. (x R^n z)) ∧ (∃n:ℕ+. (z R^n y))))
⊢ R x y
BY
{ (Decide n = 1 ∈ ℤ THENA Auto) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. ((R+ x y)
⇒ (¬(R+ y x)))
4. ∀a,b,c:T. (((R a b) ∧ (R a c))
⇒ (b = c ∈ T))
5. x : T
6. y : T
7. n : ℤ
8. 0 < n
9. x R^n y
10. ∀z:T. (¬((∃n:ℕ+. (x R^n z)) ∧ (∃n:ℕ+. (z R^n y))))
11. n = 1 ∈ ℤ
⊢ R x y
2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. ((R+ x y)
⇒ (¬(R+ y x)))
4. ∀a,b,c:T. (((R a b) ∧ (R a c))
⇒ (b = c ∈ T))
5. x : T
6. y : T
7. n : ℤ
8. 0 < n
9. x R^n y
10. ∀z:T. (¬((∃n:ℕ+. (x R^n z)) ∧ (∃n:ℕ+. (z R^n y))))
11. ¬(n = 1 ∈ ℤ)
⊢ R x y
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. \mforall{}x,y:T. ((R\msupplus{} x y) {}\mRightarrow{} (\mneg{}(R\msupplus{} y x)))
4. \mforall{}a,b,c:T. (((R a b) \mwedge{} (R a c)) {}\mRightarrow{} (b = c))
5. x : T
6. y : T
7. n : \mBbbZ{}
8. 0 < n
9. x rel\_exp(T; R; n) y
10. \mforall{}z:T. (\mneg{}((\mexists{}n:\mBbbN{}\msupplus{}. (x rel\_exp(T; R; n) z)) \mwedge{} (\mexists{}n:\mBbbN{}\msupplus{}. (z rel\_exp(T; R; n) y))))
\mvdash{} R x y
By
Latex:
(Decide n = 1 THENA Auto)
Home
Index