Nuprl Lemma : rel-is-immediate
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (∀x,y:T.  (R x y ⇐⇒ R+! x y)) supposing 
     ((∀a,b,c:T.  (((R a b) ∧ (R a c)) ⇒ (b = c ∈ T))) and 
     (∀x,y:T.  ((R+ x y) ⇒ (¬(R+ y x)))))
Proof
Definitions occuring in Statement : 
rel-immediate: R!, 
rel_plus: R+, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rel-immediate: R!, 
cand: A c∧ B, 
infix_ap: x f y, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
rel_plus: R+, 
nat_plus: ℕ+, 
decidable: Dec(P), 
sq_type: SQType(T), 
guard: {T}, 
rel_exp: R^n, 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
uiff: uiff(P;Q), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
le: A ≤ B
Lemmas referenced : 
rel_plus_wf, 
rel-immediate_wf, 
all_wf, 
equal_wf, 
not_wf, 
rel-rel-plus, 
rel_plus_iff2, 
rel_star_wf, 
rel-star-iff-rel-plus-or, 
nat_plus_properties, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
eq_int_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
assert_wf, 
bnot_wf, 
equal-wf-base, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
less_than_wf, 
rel_exp_one, 
rel_exp_wf, 
nat_plus_subtype_nat, 
subtract_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
not-equal-2, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-commutes, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
minus-add, 
add-swap, 
minus-zero, 
le-add-cancel2, 
minus-minus, 
minus-one-mul, 
minus-one-mul-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
applyEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
functionExtensionality, 
hypothesis, 
functionEquality, 
universeEquality, 
rename, 
axiomEquality, 
productEquality, 
because_Cache, 
lambdaFormation, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
unionElimination, 
setElimination, 
natural_numberEquality, 
instantiate, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
baseClosed, 
impliesFunctionality, 
dependent_set_memberEquality, 
imageMemberEquality, 
addEquality, 
minusEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x,y:T.    (R  x  y  \mLeftarrow{}{}\mRightarrow{}  R\msupplus{}!  x  y))  supposing 
          ((\mforall{}a,b,c:T.    (((R  a  b)  \mwedge{}  (R  a  c))  {}\mRightarrow{}  (b  =  c)))  and 
          (\mforall{}x,y:T.    ((R\msupplus{}  x  y)  {}\mRightarrow{}  (\mneg{}(R\msupplus{}  y  x)))))
Date html generated:
2016_10_25-AM-11_01_19
Last ObjectModification:
2016_07_12-AM-07_08_22
Theory : general
Home
Index