Step
*
1
1
1
of Lemma
residue-mul-inverse
1. n : {2...}
2. a : ℕ
3. CoPrime(n,a)
4. x : ℤ
5. y : ℤ
6. ((n * x) + (a * y)) = 1 ∈ ℤ
⊢ ((y * a) mod n) = 1 ∈ ℤ
BY
{ Subst ⌜1 ~ 1 mod n⌝ 0⋅ }
1
.....equality.....
1. n : {2...}
2. a : ℕ
3. CoPrime(n,a)
4. x : ℤ
5. y : ℤ
6. ((n * x) + (a * y)) = 1 ∈ ℤ
⊢ 1 ~ 1 mod n
2
1. n : {2...}
2. a : ℕ
3. CoPrime(n,a)
4. x : ℤ
5. y : ℤ
6. ((n * x) + (a * y)) = 1 ∈ ℤ
⊢ ((y * a) mod n) = (1 mod n) ∈ ℤ
Latex:
Latex:
1. n : \{2...\}
2. a : \mBbbN{}
3. CoPrime(n,a)
4. x : \mBbbZ{}
5. y : \mBbbZ{}
6. ((n * x) + (a * y)) = 1
\mvdash{} ((y * a) mod n) = 1
By
Latex:
Subst \mkleeneopen{}1 \msim{} 1 mod n\mkleeneclose{} 0\mcdot{}
Home
Index