Step
*
1
2
2
2
2
2
1
of Lemma
residue-mul-inverse
1. n : {2...}
2. a : ℕ
3. CoPrime(n,a)
4. 1 ∈ residue(n)
5. b : ℤ
6. (ba mod n) = 1 ∈ ℤ
7. (ab mod n) = 1 ∈ ℤ
8. CoPrime(n,b)
9. ∀i:residue(n). ((b(ai mod n) mod n) = i ∈ residue(n))
10. ∀i:residue(n). ((a(bi mod n) mod n) = i ∈ residue(n))
⊢ ∀i:residue(n)
((((ba mod n) = 1 ∈ residue(n)) ∧ ((ab mod n) = 1 ∈ residue(n)))
∧ ((b(ai mod n) mod n) = i ∈ residue(n))
∧ ((a(bi mod n) mod n) = i ∈ residue(n)))
BY
{ TACTIC:((D 0 THENA Auto) THEN SplitAndConcl) }
1
1. n : {2...}
2. a : ℕ
3. CoPrime(n,a)
4. 1 ∈ residue(n)
5. b : ℤ
6. (ba mod n) = 1 ∈ ℤ
7. (ab mod n) = 1 ∈ ℤ
8. CoPrime(n,b)
9. ∀i:residue(n). ((b(ai mod n) mod n) = i ∈ residue(n))
10. ∀i:residue(n). ((a(bi mod n) mod n) = i ∈ residue(n))
11. i : residue(n)
⊢ (ba mod n) = 1 ∈ residue(n)
2
1. n : {2...}
2. a : ℕ
3. CoPrime(n,a)
4. 1 ∈ residue(n)
5. b : ℤ
6. (ba mod n) = 1 ∈ ℤ
7. (ab mod n) = 1 ∈ ℤ
8. CoPrime(n,b)
9. ∀i:residue(n). ((b(ai mod n) mod n) = i ∈ residue(n))
10. ∀i:residue(n). ((a(bi mod n) mod n) = i ∈ residue(n))
11. i : residue(n)
⊢ (ab mod n) = 1 ∈ residue(n)
3
1. n : {2...}
2. a : ℕ
3. CoPrime(n,a)
4. 1 ∈ residue(n)
5. b : ℤ
6. (ba mod n) = 1 ∈ ℤ
7. (ab mod n) = 1 ∈ ℤ
8. CoPrime(n,b)
9. ∀i:residue(n). ((b(ai mod n) mod n) = i ∈ residue(n))
10. ∀i:residue(n). ((a(bi mod n) mod n) = i ∈ residue(n))
11. i : residue(n)
⊢ (b(ai mod n) mod n) = i ∈ residue(n)
4
1. n : {2...}
2. a : ℕ
3. CoPrime(n,a)
4. 1 ∈ residue(n)
5. b : ℤ
6. (ba mod n) = 1 ∈ ℤ
7. (ab mod n) = 1 ∈ ℤ
8. CoPrime(n,b)
9. ∀i:residue(n). ((b(ai mod n) mod n) = i ∈ residue(n))
10. ∀i:residue(n). ((a(bi mod n) mod n) = i ∈ residue(n))
11. i : residue(n)
⊢ (a(bi mod n) mod n) = i ∈ residue(n)
Latex:
Latex:
1. n : \{2...\}
2. a : \mBbbN{}
3. CoPrime(n,a)
4. 1 \mmember{} residue(n)
5. b : \mBbbZ{}
6. (ba mod n) = 1
7. (ab mod n) = 1
8. CoPrime(n,b)
9. \mforall{}i:residue(n). ((b(ai mod n) mod n) = i)
10. \mforall{}i:residue(n). ((a(bi mod n) mod n) = i)
\mvdash{} \mforall{}i:residue(n)
((((ba mod n) = 1) \mwedge{} ((ab mod n) = 1)) \mwedge{} ((b(ai mod n) mod n) = i) \mwedge{} ((a(bi mod n) mod n) = i))
By
Latex:
TACTIC:((D 0 THENA Auto) THEN SplitAndConcl)
Home
Index