Nuprl Lemma : strict-fun-connected-induction
∀[T:Type]
∀f:T ⟶ T
∀[R:T ⟶ T ⟶ ℙ]
((∀x,y,z:T. (y is f*(z)
⇒ (R[y;z] ∨ (y = z ∈ T))
⇒ R[x;z]) supposing ((¬(x = y ∈ T)) and (x = (f y) ∈ T)))
⇒ {∀x,y:T. (x = f+(y)
⇒ R[x;y])})
Proof
Definitions occuring in Statement :
strict-fun-connected: y = f+(x)
,
fun-connected: y is f*(x)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
or: P ∨ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
guard: {T}
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
or: P ∨ Q
,
prop: ℙ
,
uimplies: b supposing a
,
not: ¬A
,
false: False
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
strict-fun-connected: y = f+(x)
,
and: P ∧ Q
Lemmas referenced :
fun-connected-induction,
or_wf,
equal_wf,
fun-connected_wf,
not_wf,
all_wf,
isect_wf,
strict-fun-connected_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_functionElimination,
lambdaEquality,
applyEquality,
functionExtensionality,
cumulativity,
hypothesis,
independent_functionElimination,
inrFormation,
because_Cache,
axiomEquality,
rename,
voidElimination,
inlFormation,
functionEquality,
universeEquality,
independent_isectElimination,
unionElimination,
productElimination,
equalitySymmetry
Latex:
\mforall{}[T:Type]
\mforall{}f:T {}\mrightarrow{} T
\mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]
((\mforall{}x,y,z:T.
(y is f*(z) {}\mRightarrow{} (R[y;z] \mvee{} (y = z)) {}\mRightarrow{} R[x;z]) supposing ((\mneg{}(x = y)) and (x = (f y))))
{}\mRightarrow{} \{\mforall{}x,y:T. (x = f+(y) {}\mRightarrow{} R[x;y])\})
Date html generated:
2018_05_21-PM-07_45_27
Last ObjectModification:
2017_07_26-PM-05_22_51
Theory : general
Home
Index