Step
*
1
1
1
of Lemma
unique-awf
1. [A] : Type
2. [I] : Type
3. G : ⋂T:{T:Type| ((A + (T List)) ⊆r T) ∧ (awf(A) ⊆r T)} . ((I ⟶ T) ⟶ I ⟶ (A + (T List))) ⋂ Top ⟶ I ⟶ Top@i'
4. G ∈ Top ⟶ I ⟶ Top
5. G ∈ ⋂T:{T:Type| ((A + (T List)) ⊆r T) ∧ (awf(A) ⊆r T)} . ((I ⟶ T) ⟶ I ⟶ (A + (T List)))
⊢ G ∈ (I ⟶ awf(A)) ⟶ I ⟶ awf(A)
BY
{ ((InstLemma `corec-ext` [⌜λ2T.A + (T List)⌝]⋅ THENM (Fold `awf` (-1) THEN D -1)) THENA Auto) }
1
1. [A] : Type
2. [I] : Type
3. G : ⋂T:{T:Type| ((A + (T List)) ⊆r T) ∧ (awf(A) ⊆r T)} . ((I ⟶ T) ⟶ I ⟶ (A + (T List))) ⋂ Top ⟶ I ⟶ Top@i'
4. G ∈ Top ⟶ I ⟶ Top
5. G ∈ ⋂T:{T:Type| ((A + (T List)) ⊆r T) ∧ (awf(A) ⊆r T)} . ((I ⟶ T) ⟶ I ⟶ (A + (T List)))
6. awf(A) ⊆r (A + (awf(A) List))
7. (A + (awf(A) List)) ⊆r awf(A)
⊢ G ∈ (I ⟶ awf(A)) ⟶ I ⟶ awf(A)
Latex:
Latex:
1. [A] : Type
2. [I] : Type
3. G : \mcap{}T:\{T:Type| ((A + (T List)) \msubseteq{}r T) \mwedge{} (awf(A) \msubseteq{}r T)\} . ((I {}\mrightarrow{} T) {}\mrightarrow{} I {}\mrightarrow{} (A + (T List))) \mcap{} Top
{}\mrightarrow{} I
{}\mrightarrow{} Top@i'
4. G \mmember{} Top {}\mrightarrow{} I {}\mrightarrow{} Top
5. G \mmember{} \mcap{}T:\{T:Type| ((A + (T List)) \msubseteq{}r T) \mwedge{} (awf(A) \msubseteq{}r T)\} . ((I {}\mrightarrow{} T) {}\mrightarrow{} I {}\mrightarrow{} (A + (T List)))
\mvdash{} G \mmember{} (I {}\mrightarrow{} awf(A)) {}\mrightarrow{} I {}\mrightarrow{} awf(A)
By
Latex:
((InstLemma `corec-ext` [\mkleeneopen{}\mlambda{}\msubtwo{}T.A + (T List)\mkleeneclose{}]\mcdot{} THENM (Fold `awf` (-1) THEN D -1)) THENA Auto)
Home
Index