Step
*
1
2
of Lemma
unique-minimal-wellfounded-implies
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. ∀[P:T ⟶ ℙ]. ((∀j:T. ((∀k:T. (R[k;j]
⇒ P[k]))
⇒ P[j]))
⇒ {∀n:T. P[n]})@i'
4. m : T@i
5. unique-minimal(T;x,y.R[x;y];m)@i
6. j : T@i
7. ∀k:T. (R[k;j]
⇒ (↓m ((λx,y. R[x;y])^*) k))@i
8. ¬↓∃x:T. R[x;j]@i
⊢ ↓m ((λx,y. R[x;y])^*) j
BY
{ (D 0
THEN BLemma `rel_star_weakening`
THEN Auto
THEN Symmetry
THEN BackThruSomeHyp'
THEN Auto
THEN D 0
THEN Auto
THEN D (-3)
THEN D 0
THEN With ⌜x⌝ (D 0)⋅
THEN Auto) }
Latex:
Latex:
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}]. ((\mforall{}j:T. ((\mforall{}k:T. (R[k;j] {}\mRightarrow{} P[k])) {}\mRightarrow{} P[j])) {}\mRightarrow{} \{\mforall{}n:T. P[n]\})@i'
4. m : T@i
5. unique-minimal(T;x,y.R[x;y];m)@i
6. j : T@i
7. \mforall{}k:T. (R[k;j] {}\mRightarrow{} (\mdownarrow{}m rel\_star(T; \mlambda{}x,y. R[x;y]) k))@i
8. \mneg{}\mdownarrow{}\mexists{}x:T. R[x;j]@i
\mvdash{} \mdownarrow{}m rel\_star(T; \mlambda{}x,y. R[x;y]) j
By
Latex:
(D 0
THEN BLemma `rel\_star\_weakening`
THEN Auto
THEN Symmetry
THEN BackThruSomeHyp'
THEN Auto
THEN D 0
THEN Auto
THEN D (-3)
THEN D 0
THEN With \mkleeneopen{}x\mkleeneclose{} (D 0)\mcdot{}
THEN Auto)
Home
Index