Step
*
1
1
1
1
1
of Lemma
fdl-is-1_wf
1. X : Type
2. as : X List List@i
3. bs : X List List@i
4. ∀b:X List. ((b ∈ as)
⇒ (∃a:X List. ((a ∈ bs) ∧ a ⊆ b)))
5. a : X List@i
6. (a ∈ as)
7. ↑isaxiom(a)
8. a1 : X List
9. (a1 ∈ bs)
10. a1 ⊆ a
11. (a1 ∈ bs)
⊢ ↑isaxiom(a1)
BY
{ ((DVar `a' THEN All Reduce THEN Try (Trivial)) THEN DVar `a1' THEN All Reduce THEN Try (Trivial)) }
1
1. X : Type
2. as : X List List@i
3. bs : X List List@i
4. ∀b:X List. ((b ∈ as)
⇒ (∃a:X List. ((a ∈ bs) ∧ a ⊆ b)))
5. ([] ∈ as)
6. True
7. u : X
8. v : X List
9. ([u / v] ∈ bs)
10. [u / v] ⊆ []
11. ([u / v] ∈ bs)
⊢ False
Latex:
Latex:
1. X : Type
2. as : X List List@i
3. bs : X List List@i
4. \mforall{}b:X List. ((b \mmember{} as) {}\mRightarrow{} (\mexists{}a:X List. ((a \mmember{} bs) \mwedge{} a \msubseteq{} b)))
5. a : X List@i
6. (a \mmember{} as)
7. \muparrow{}isaxiom(a)
8. a1 : X List
9. (a1 \mmember{} bs)
10. a1 \msubseteq{} a
11. (a1 \mmember{} bs)
\mvdash{} \muparrow{}isaxiom(a1)
By
Latex:
((DVar `a' THEN All Reduce THEN Try (Trivial)) THEN DVar `a1' THEN All Reduce THEN Try (Trivial))
Home
Index