Nuprl Lemma : agree_on_common_iseg
∀[T:Type]
  ∀as2,bs2,as1,bs1:T List.  (as1 ≤ as2 
⇒ bs1 ≤ bs2 
⇒ agree_on_common(T;as2;bs2) 
⇒ agree_on_common(T;as1;bs1))
Proof
Definitions occuring in Statement : 
agree_on_common: agree_on_common(T;as;bs)
, 
iseg: l1 ≤ l2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
agree_on_common: agree_on_common(T;as;bs)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
or: P ∨ Q
, 
not: ¬A
, 
guard: {T}
, 
false: False
, 
cand: A c∧ B
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
iseg_wf, 
agree_on_common_wf, 
istype-universe, 
nil_wf, 
iseg_nil, 
assert_of_null, 
cons_wf, 
agree_on_common_nil, 
list_ind_nil_lemma, 
istype-void, 
list_ind_cons_lemma, 
cons_iseg, 
not_wf, 
l_member_wf, 
cons_member, 
iseg_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
hypothesis, 
because_Cache, 
functionEquality, 
inhabitedIsType, 
universeIsType, 
independent_functionElimination, 
rename, 
functionIsType, 
dependent_functionElimination, 
universeEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
equalityIsType1, 
unionElimination, 
inlFormation_alt, 
unionIsType, 
inrFormation_alt, 
independent_pairFormation, 
promote_hyp, 
equalityTransitivity
Latex:
\mforall{}[T:Type]
    \mforall{}as2,bs2,as1,bs1:T  List.
        (as1  \mleq{}  as2  {}\mRightarrow{}  bs1  \mleq{}  bs2  {}\mRightarrow{}  agree\_on\_common(T;as2;bs2)  {}\mRightarrow{}  agree\_on\_common(T;as1;bs1))
Date html generated:
2019_10_15-AM-10_53_47
Last ObjectModification:
2018_10_09-AM-10_28_16
Theory : list!
Home
Index