Nuprl Lemma : agree_on_common_iseg

[T:Type]
  ∀as2,bs2,as1,bs1:T List.  (as1 ≤ as2  bs1 ≤ bs2  agree_on_common(T;as2;bs2)  agree_on_common(T;as1;bs1))


Proof




Definitions occuring in Statement :  agree_on_common: agree_on_common(T;as;bs) iseg: l1 ≤ l2 list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] agree_on_common: agree_on_common(T;as;bs) list_ind: list_ind nil: [] it: true: True iff: ⇐⇒ Q and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a rev_implies:  Q so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] or: P ∨ Q not: ¬A guard: {T} false: False cand: c∧ B
Lemmas referenced :  list_induction all_wf list_wf iseg_wf agree_on_common_wf istype-universe nil_wf iseg_nil assert_of_null cons_wf agree_on_common_nil list_ind_nil_lemma istype-void list_ind_cons_lemma cons_iseg not_wf l_member_wf cons_member iseg_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality_alt hypothesis because_Cache functionEquality inhabitedIsType universeIsType independent_functionElimination rename functionIsType dependent_functionElimination universeEquality hyp_replacement equalitySymmetry applyLambdaEquality productElimination independent_isectElimination natural_numberEquality isect_memberEquality_alt voidElimination productIsType equalityIsType1 unionElimination inlFormation_alt unionIsType inrFormation_alt independent_pairFormation promote_hyp equalityTransitivity

Latex:
\mforall{}[T:Type]
    \mforall{}as2,bs2,as1,bs1:T  List.
        (as1  \mleq{}  as2  {}\mRightarrow{}  bs1  \mleq{}  bs2  {}\mRightarrow{}  agree\_on\_common(T;as2;bs2)  {}\mRightarrow{}  agree\_on\_common(T;as1;bs1))



Date html generated: 2019_10_15-AM-10_53_47
Last ObjectModification: 2018_10_09-AM-10_28_16

Theory : list!


Home Index