Nuprl Lemma : sublist_interleaved

[T:Type]. ∀L,L1:T List.  (L1 ⊆  (∃L2:T List. interleaving(T;L1;L2;L)))


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B or: P ∨ Q
Lemmas referenced :  list_induction all_wf list_wf sublist_wf exists_wf interleaving_wf istype-universe nil_wf sublist_nil interleaving_of_nil cons_wf nil_interleaving cons_sublist_cons cons_interleaving cons_interleaving2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality_alt hypothesis functionEquality because_Cache inhabitedIsType universeIsType independent_functionElimination rename functionIsType productIsType dependent_functionElimination universeEquality dependent_pairFormation_alt productElimination independent_pairFormation hyp_replacement equalitySymmetry applyLambdaEquality unionElimination

Latex:
\mforall{}[T:Type].  \mforall{}L,L1:T  List.    (L1  \msubseteq{}  L  {}\mRightarrow{}  (\mexists{}L2:T  List.  interleaving(T;L1;L2;L)))



Date html generated: 2019_10_15-AM-10_56_56
Last ObjectModification: 2018_10_09-AM-10_07_19

Theory : list!


Home Index