Nuprl Lemma : sublist_interleaved
∀[T:Type]. ∀L,L1:T List.  (L1 ⊆ L 
⇒ (∃L2:T List. interleaving(T;L1;L2;L)))
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
sublist: L1 ⊆ L2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
or: P ∨ Q
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
sublist_wf, 
exists_wf, 
interleaving_wf, 
istype-universe, 
nil_wf, 
sublist_nil, 
interleaving_of_nil, 
cons_wf, 
nil_interleaving, 
cons_sublist_cons, 
cons_interleaving, 
cons_interleaving2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
hypothesis, 
functionEquality, 
because_Cache, 
inhabitedIsType, 
universeIsType, 
independent_functionElimination, 
rename, 
functionIsType, 
productIsType, 
dependent_functionElimination, 
universeEquality, 
dependent_pairFormation_alt, 
productElimination, 
independent_pairFormation, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination
Latex:
\mforall{}[T:Type].  \mforall{}L,L1:T  List.    (L1  \msubseteq{}  L  {}\mRightarrow{}  (\mexists{}L2:T  List.  interleaving(T;L1;L2;L)))
Date html generated:
2019_10_15-AM-10_56_56
Last ObjectModification:
2018_10_09-AM-10_07_19
Theory : list!
Home
Index