Nuprl Lemma : fps-add-comm
∀[X:Type]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].  ((f+g) = (g+f) ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement : 
fps-add: (f+g), 
power-series: PowerSeries(X;r), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
crng: CRng, 
comm: Comm(T;op), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
fps-add: (f+g), 
fps-coeff: f[b], 
power-series: PowerSeries(X;r), 
infix_ap: x f y
Lemmas referenced : 
rng_plus_comm, 
fps-ext, 
fps-add_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
applyEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].    ((f+g)  =  (g+f))
 Date html generated: 
2016_05_15-PM-09_47_51
 Last ObjectModification: 
2015_12_27-PM-04_40_47
Theory : power!series
Home
Index