Step * 3 2 1 1 of Lemma fps-compose-compose

.....subterm..... T:t
3:n
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. PowerSeries(X;r)
8. X
9. fps-ucont(X;eq;r;f.f(x:=g)(x:=h))
10. fps-ucont(X;eq;r;f.f(x:=g(x:=h)))
11. ∀f,g@0:PowerSeries(X;r).  ((f+g@0)(x:=g)(x:=h) (f(x:=g)(x:=h)+g@0(x:=g)(x:=h)) ∈ PowerSeries(X;r))
12. ∀f,g@0:PowerSeries(X;r).  ((f+g@0)(x:=g(x:=h)) (f(x:=g(x:=h))+g@0(x:=g(x:=h))) ∈ PowerSeries(X;r))
13. ∀c:|r|. ∀f:PowerSeries(X;r).  ((c)*f(x:=g)(x:=h) (c)*f(x:=g)(x:=h) ∈ PowerSeries(X;r))
14. ∀c:|r|. ∀f:PowerSeries(X;r).  ((c)*f(x:=g(x:=h)) (c)*f(x:=g(x:=h)) ∈ PowerSeries(X;r))
15. X
16. List
17. <v>(x:=g)(x:=h) = <v>(x:=g(x:=h)) ∈ PowerSeries(X;r)
⊢ <{u}>(x:=g)(x:=h) = <{u}>(x:=g(x:=h)) ∈ PowerSeries(X;r)
BY
xxx(Fold `fps-atom` THEN AutoBoolCase ⌜eq x⌝⋅)xxx }

1
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. PowerSeries(X;r)
8. X
9. fps-ucont(X;eq;r;f.f(x:=g)(x:=h))
10. fps-ucont(X;eq;r;f.f(x:=g(x:=h)))
11. ∀f,g@0:PowerSeries(X;r).  ((f+g@0)(x:=g)(x:=h) (f(x:=g)(x:=h)+g@0(x:=g)(x:=h)) ∈ PowerSeries(X;r))
12. ∀f,g@0:PowerSeries(X;r).  ((f+g@0)(x:=g(x:=h)) (f(x:=g(x:=h))+g@0(x:=g(x:=h))) ∈ PowerSeries(X;r))
13. ∀c:|r|. ∀f:PowerSeries(X;r).  ((c)*f(x:=g)(x:=h) (c)*f(x:=g)(x:=h) ∈ PowerSeries(X;r))
14. ∀c:|r|. ∀f:PowerSeries(X;r).  ((c)*f(x:=g(x:=h)) (c)*f(x:=g(x:=h)) ∈ PowerSeries(X;r))
15. X
16. List
17. <v>(x:=g)(x:=h) = <v>(x:=g(x:=h)) ∈ PowerSeries(X;r)
18. x ∈ X
⊢ atom(u)(x:=g)(x:=h) atom(u)(x:=g(x:=h)) ∈ PowerSeries(X;r)

2
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. PowerSeries(X;r)
8. X
9. fps-ucont(X;eq;r;f.f(x:=g)(x:=h))
10. fps-ucont(X;eq;r;f.f(x:=g(x:=h)))
11. ∀f,g@0:PowerSeries(X;r).  ((f+g@0)(x:=g)(x:=h) (f(x:=g)(x:=h)+g@0(x:=g)(x:=h)) ∈ PowerSeries(X;r))
12. ∀f,g@0:PowerSeries(X;r).  ((f+g@0)(x:=g(x:=h)) (f(x:=g(x:=h))+g@0(x:=g(x:=h))) ∈ PowerSeries(X;r))
13. ∀c:|r|. ∀f:PowerSeries(X;r).  ((c)*f(x:=g)(x:=h) (c)*f(x:=g)(x:=h) ∈ PowerSeries(X;r))
14. ∀c:|r|. ∀f:PowerSeries(X;r).  ((c)*f(x:=g(x:=h)) (c)*f(x:=g(x:=h)) ∈ PowerSeries(X;r))
15. X
16. ¬(u x ∈ X)
17. List
18. <v>(x:=g)(x:=h) = <v>(x:=g(x:=h)) ∈ PowerSeries(X;r)
⊢ atom(u)(x:=g)(x:=h) atom(u)(x:=g(x:=h)) ∈ PowerSeries(X;r)


Latex:


Latex:
.....subterm.....  T:t
3:n
1.  X  :  Type
2.  valueall-type(X)
3.  eq  :  EqDecider(X)
4.  r  :  CRng
5.  f  :  PowerSeries(X;r)
6.  g  :  PowerSeries(X;r)
7.  h  :  PowerSeries(X;r)
8.  x  :  X
9.  fps-ucont(X;eq;r;f.f(x:=g)(x:=h))
10.  fps-ucont(X;eq;r;f.f(x:=g(x:=h)))
11.  \mforall{}f,g@0:PowerSeries(X;r).    ((f+g@0)(x:=g)(x:=h)  =  (f(x:=g)(x:=h)+g@0(x:=g)(x:=h)))
12.  \mforall{}f,g@0:PowerSeries(X;r).    ((f+g@0)(x:=g(x:=h))  =  (f(x:=g(x:=h))+g@0(x:=g(x:=h))))
13.  \mforall{}c:|r|.  \mforall{}f:PowerSeries(X;r).    ((c)*f(x:=g)(x:=h)  =  (c)*f(x:=g)(x:=h))
14.  \mforall{}c:|r|.  \mforall{}f:PowerSeries(X;r).    ((c)*f(x:=g(x:=h))  =  (c)*f(x:=g(x:=h)))
15.  u  :  X
16.  v  :  X  List
17.  <v>(x:=g)(x:=h)  =  <v>(x:=g(x:=h))
\mvdash{}  <\{u\}>(x:=g)(x:=h)  =  <\{u\}>(x:=g(x:=h))


By


Latex:
xxx(Fold  `fps-atom`  0  THEN  AutoBoolCase  \mkleeneopen{}eq  u  x\mkleeneclose{}\mcdot{})xxx




Home Index