Nuprl Lemma : fps-elim-div
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[z:|r|]. ∀[x:X].
    (fps-elim(x) (f÷g)) = (fps-elim(x) f÷fps-elim(x) g) ∈ PowerSeries(X;r) 
    supposing (¬((fps-elim(x) f) = 0 ∈ PowerSeries(X;r))) ∧ ((g[{}] * z) = 1 ∈ |r|) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-elim: fps-elim(x), 
fps-div: (f÷g), 
fps-zero: 0, 
fps-coeff: f[b], 
power-series: PowerSeries(X;r), 
empty-bag: {}, 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
not: ¬A, 
and: P ∧ Q, 
apply: f a, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng, 
rng_one: 1, 
rng_times: *, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
infix_ap: x f y, 
all: ∀x:A. B[x], 
cand: A c∧ B, 
fps-coeff: f[b], 
fps-elim: fps-elim(x), 
ifthenelse: if b then t else f fi , 
bag-deq-member: bag-deq-member(eq;x;b), 
deq-member: x ∈b L, 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
empty-bag: {}, 
nil: [], 
it: ⋅, 
bfalse: ff, 
crng: CRng, 
rng: Rng
Lemmas referenced : 
fps-div-property, 
equal_wf, 
squash_wf, 
true_wf, 
power-series_wf, 
fps-elim_wf, 
iff_weakening_equal, 
fps-elim-hom, 
fps-div_wf, 
fps-div-unique, 
not_wf, 
fps-zero_wf, 
rng_car_wf, 
rng_times_wf, 
fps-coeff_wf, 
empty-bag_wf, 
rng_one_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
productElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
cumulativity, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
productEquality, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[z:|r|].  \mforall{}[x:X].
        (fps-elim(x)  (f\mdiv{}g))  =  (fps-elim(x)  f\mdiv{}fps-elim(x)  g) 
        supposing  (\mneg{}((fps-elim(x)  f)  =  0))  \mwedge{}  ((g[\{\}]  *  z)  =  1) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_59_12
Last ObjectModification:
2017_07_26-PM-06_33_43
Theory : power!series
Home
Index