Nuprl Lemma : fps-elim-hom
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X].
    (FunThru2op(PowerSeries(X;r);PowerSeries(X;r);λf,g. (f+g);λf,g. (f+g);fps-elim(x))
    ∧ FunThru2op(PowerSeries(X;r);PowerSeries(X;r);λf,g. (f*g);λf,g. (f*g);fps-elim(x))
    ∧ ((fps-elim(x) 1) = 1 ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-elim: fps-elim(x), 
fps-mul: (f*g), 
fps-add: (f+g), 
fps-one: 1, 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
cand: A c∧ B, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
infix_ap: x f y, 
uiff: uiff(P;Q), 
all: ∀x:A. B[x], 
fps-elim: fps-elim(x), 
fps-add: (f+g), 
fps-coeff: f[b], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
crng: CRng, 
rng: Rng, 
power-series: PowerSeries(X;r), 
fps-mul: (f*g), 
fps-one: 1, 
true: True, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
pi1: fst(t), 
pi2: snd(t), 
so_apply: x[s], 
sq_or: a ↓∨ b, 
ring_p: IsRing(T;plus;zero;neg;times;one), 
group_p: IsGroup(T;op;id;inv), 
top: Top
Lemmas referenced : 
fps-ext, 
fps-elim_wf, 
fps-add_wf, 
bag-deq-member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-deq-member, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bag-member_wf, 
rng_plus_wf, 
bag_wf, 
power-series_wf, 
fps-mul_wf, 
fps-one_wf, 
bag-null_wf, 
assert-bag-null, 
bag-member-empty-iff, 
equal-wf-T-base, 
rng_zero_wf, 
rng_one_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
rng_car_wf, 
squash_wf, 
true_wf, 
rng_plus_zero, 
iff_weakening_equal, 
bag-summation-is-zero, 
bag-partitions_wf, 
rng_times_wf, 
rng_plus_comm2, 
bag-member-partitions, 
rng_times_zero, 
bag-member-append, 
crng_properties, 
rng_properties, 
bag-summation-equal, 
pi1_wf_top, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
cumulativity, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
hyp_replacement, 
applyLambdaEquality, 
baseClosed, 
independent_pairEquality, 
universeEquality, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
productEquality, 
voidEquality, 
inlFormation, 
inrFormation
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].
        (FunThru2op(PowerSeries(X;r);PowerSeries(X;r);\mlambda{}f,g.  (f+g);\mlambda{}f,g.  (f+g);fps-elim(x))
        \mwedge{}  FunThru2op(PowerSeries(X;r);PowerSeries(X;r);\mlambda{}f,g.  (f*g);\mlambda{}f,g.  (f*g);fps-elim(x))
        \mwedge{}  ((fps-elim(x)  1)  =  1)) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_59_09
Last ObjectModification:
2017_07_26-PM-06_33_41
Theory : power!series
Home
Index