Step
*
1
1
2
2
of Lemma
boundary-of-0-dim-is-nil
1. k : ℕ
2. K : ℚCube(k) List
3. (∀c∈K.dim(c) = 0 ∈ ℤ)
4. ∀[L:ℚCube(k) List]. L ~ [] supposing ∀x:ℚCube(k). (¬(x ∈ L))
5. x : ℚCube(k)
6. (∃c:ℚCube(k). ((c ∈ K) ∧ (↑Inhabited(c)) ∧ (x ∈ rat-cube-faces(k;c))))
⇒ False
⊢ face-complex(k;K) ∈ ℚCube(k) List
BY
{ ProveWfLemma }
Latex:
Latex:
1. k : \mBbbN{}
2. K : \mBbbQ{}Cube(k) List
3. (\mforall{}c\mmember{}K.dim(c) = 0)
4. \mforall{}[L:\mBbbQ{}Cube(k) List]. L \msim{} [] supposing \mforall{}x:\mBbbQ{}Cube(k). (\mneg{}(x \mmember{} L))
5. x : \mBbbQ{}Cube(k)
6. (\mexists{}c:\mBbbQ{}Cube(k). ((c \mmember{} K) \mwedge{} (\muparrow{}Inhabited(c)) \mwedge{} (x \mmember{} rat-cube-faces(k;c)))) {}\mRightarrow{} False
\mvdash{} face-complex(k;K) \mmember{} \mBbbQ{}Cube(k) List
By
Latex:
ProveWfLemma
Home
Index