Nuprl Lemma : boundary-of-0-dim-is-nil
∀[k:ℕ]. ∀[K:ℚCube(k) List].  ∂(K) ~ [] supposing (∀c∈K.dim(c) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
rat-complex-boundary: ∂(K), 
rat-cube-dimension: dim(c), 
rational-cube: ℚCube(k), 
l_all: (∀x∈L.P[x]), 
nil: [], 
list: T List, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
int: ℤ, 
sqequal: s ~ t, 
equal: s = t ∈ T
Definitions unfolded in proof : 
concat: concat(ll), 
nequal: a ≠ b ∈ T , 
less_than': less_than'(a;b), 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
rat-cube-dimension: dim(c), 
le: A ≤ B, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
less_than: a < b, 
lelt: i ≤ j < k, 
rational-cube: ℚCube(k), 
mapfilter: mapfilter(f;P;L), 
rat-cube-faces: rat-cube-faces(k;c), 
rev_implies: P ⇐ Q, 
guard: {T}, 
true: True, 
squash: ↓T, 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
bfalse: ff, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
face-complex: face-complex(k;L), 
prop: ℙ, 
so_apply: x[s], 
nat: ℕ, 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
top: Top, 
all: ∀x:A. B[x], 
rat-cube-sub-complex: rat-cube-sub-complex(P;L), 
rat-complex-boundary: ∂(K), 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
btrue_neq_bfalse, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_nil_lemma, 
reduce_nil_lemma, 
map_nil_lemma, 
int_term_value_add_lemma, 
itermAdd_wf, 
sum_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
ifthenelse_wf, 
non_neg_sum, 
assert_of_eq_int, 
le_wf, 
istype-false, 
int_seg_subtype_nat, 
Error :isolate_summand2, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
member_filter, 
istype-less_than, 
istype-le, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
rat-interval-dimension_wf, 
eq_int_wf, 
upto_wf, 
filter_wf5, 
int_seg_wf, 
iff_weakening_equal, 
subtype_rel_self, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
l_all_iff, 
istype-assert, 
member-face-complex, 
nil_wf, 
subtract_wf, 
rat-cube-face_wf, 
subtype_rel_list, 
rat-cube-faces_wf, 
eqtt_to_assert, 
inhabited-rat-cube_wf, 
map_wf, 
concat_wf, 
rc-deq_wf, 
remove-repeats_wf, 
no-member-sq-nil, 
istype-nat, 
list_wf, 
l_member_wf, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
equal-wf-base, 
rational-cube_wf, 
l_all_wf2, 
istype-void, 
filter_nil_lemma
Rules used in proof : 
applyLambdaEquality, 
cumulativity, 
promote_hyp, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
universeEquality, 
instantiate, 
imageElimination, 
independent_functionElimination, 
sqequalBase, 
equalityIstype, 
productIsType, 
equalitySymmetry, 
equalityTransitivity, 
productEquality, 
setEquality, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
because_Cache, 
inhabitedIsType, 
isectIsTypeImplies, 
setIsType, 
baseClosed, 
independent_isectElimination, 
addEquality, 
natural_numberEquality, 
minusEquality, 
applyEquality, 
rename, 
setElimination, 
intEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
isectElimination, 
universeIsType, 
axiomSqEquality, 
hypothesis, 
voidElimination, 
isect_memberEquality_alt, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].    \mpartial{}(K)  \msim{}  []  supposing  (\mforall{}c\mmember{}K.dim(c)  =  0)
Date html generated:
2019_10_29-AM-07_58_25
Last ObjectModification:
2019_10_19-PM-10_28_06
Theory : rationals
Home
Index