Step * 1 1 1 1 1 of Lemma boundary-singleton-complex


1. : ℕ
2. : ℕ
3. {c:ℚCube(k)| dim(c) n ∈ ℤ
4. ↑Inhabited(c)
5. {f:ℚCube(k)| f ≤ c ∧ (dim(f) (dim(c) 1) ∈ ℤ)}  List
6. remove-repeats(rc-deq(k);rat-cube-faces(k;c)) v ∈ ({f:ℚCube(k)| f ≤ c ∧ (dim(f) (dim(c) 1) ∈ ℤ)}  List)
7. v ∈ ℚCube(k) List
8. : ℚCube(k)
9. ¬↑is-rat-cube-face(k;x;c)
10. x ≤ c
11. dim(x) (dim(c) 1) ∈ ℤ
⊢ ↑isOdd(0)
BY
(D -3 THEN RWO "assert-is-rat-cube-face" THEN Auto) }


Latex:


Latex:

1.  k  :  \mBbbN{}
2.  n  :  \mBbbN{}
3.  c  :  \{c:\mBbbQ{}Cube(k)|  dim(c)  =  n\} 
4.  \muparrow{}Inhabited(c)
5.  v  :  \{f:\mBbbQ{}Cube(k)|  f  \mleq{}  c  \mwedge{}  (dim(f)  =  (dim(c)  -  1))\}    List
6.  remove-repeats(rc-deq(k);rat-cube-faces(k;c))  =  v
7.  v  \mmember{}  \mBbbQ{}Cube(k)  List
8.  x  :  \mBbbQ{}Cube(k)
9.  \mneg{}\muparrow{}is-rat-cube-face(k;x;c)
10.  x  \mleq{}  c
11.  dim(x)  =  (dim(c)  -  1)
\mvdash{}  \muparrow{}isOdd(0)


By


Latex:
(D  -3  THEN  RWO  "assert-is-rat-cube-face"  0  THEN  Auto)




Home Index