Step
*
1
of Lemma
compatible-rat-intervals-iff
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. (<qmax(I1;J1), qmin(I2;J2)> = [I1] ∈ ℚInterval)
∨ (<qmax(I1;J1), qmin(I2;J2)> = [I2] ∈ ℚInterval)
∨ (<qmax(I1;J1), qmin(I2;J2)> = <I1, I2> ∈ ℚInterval)
9. (<qmax(I1;J1), qmin(I2;J2)> = [J1] ∈ ℚInterval)
∨ (<qmax(I1;J1), qmin(I2;J2)> = [J2] ∈ ℚInterval)
∨ (<qmax(I1;J1), qmin(I2;J2)> = <J1, J2> ∈ ℚInterval)
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
BY
{ (All (Unfold `rat-point-interval`) THEN SplitOrHyps THEN ∀h:hyp. (EqHD h THENA Auto) THEN All Reduce) }
1
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. qmax(I1;J1) = I1 ∈ ℚ
9. qmin(I2;J2) = I1 ∈ ℚ
10. qmax(I1;J1) = J1 ∈ ℚ
11. qmin(I2;J2) = J1 ∈ ℚ
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
2
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. qmax(I1;J1) = I2 ∈ ℚ
9. qmin(I2;J2) = I2 ∈ ℚ
10. qmax(I1;J1) = J1 ∈ ℚ
11. qmin(I2;J2) = J1 ∈ ℚ
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
3
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. qmax(I1;J1) = I1 ∈ ℚ
9. qmin(I2;J2) = I2 ∈ ℚ
10. qmax(I1;J1) = J1 ∈ ℚ
11. qmin(I2;J2) = J1 ∈ ℚ
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
4
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. qmax(I1;J1) = I1 ∈ ℚ
9. qmin(I2;J2) = I1 ∈ ℚ
10. qmax(I1;J1) = J2 ∈ ℚ
11. qmin(I2;J2) = J2 ∈ ℚ
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
5
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. qmax(I1;J1) = I1 ∈ ℚ
9. qmin(I2;J2) = I1 ∈ ℚ
10. qmax(I1;J1) = J1 ∈ ℚ
11. qmin(I2;J2) = J2 ∈ ℚ
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
6
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. qmax(I1;J1) = I2 ∈ ℚ
9. qmin(I2;J2) = I2 ∈ ℚ
10. qmax(I1;J1) = J2 ∈ ℚ
11. qmin(I2;J2) = J2 ∈ ℚ
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
7
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. qmax(I1;J1) = I1 ∈ ℚ
9. qmin(I2;J2) = I2 ∈ ℚ
10. qmax(I1;J1) = J2 ∈ ℚ
11. qmin(I2;J2) = J2 ∈ ℚ
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
8
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. qmax(I1;J1) = I2 ∈ ℚ
9. qmin(I2;J2) = I2 ∈ ℚ
10. qmax(I1;J1) = J1 ∈ ℚ
11. qmin(I2;J2) = J2 ∈ ℚ
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
9
1. I1 : ℚ
2. I2 : ℚ
3. J1 : ℚ
4. J2 : ℚ
5. I1 ≤ I2
6. J1 ≤ J2
7. qmax(I1;J1) ≤ qmin(I2;J2)
8. qmax(I1;J1) = I1 ∈ ℚ
9. qmin(I2;J2) = I2 ∈ ℚ
10. qmax(I1;J1) = J1 ∈ ℚ
11. qmin(I2;J2) = J2 ∈ ℚ
⊢ (<I1, I2> = <J1, J2> ∈ ℚInterval) ∨ (I2 = J1 ∈ ℚ) ∨ (J2 = I1 ∈ ℚ)
Latex:
Latex:
1. I1 : \mBbbQ{}
2. I2 : \mBbbQ{}
3. J1 : \mBbbQ{}
4. J2 : \mBbbQ{}
5. I1 \mleq{} I2
6. J1 \mleq{} J2
7. qmax(I1;J1) \mleq{} qmin(I2;J2)
8. (<qmax(I1;J1), qmin(I2;J2)> = [I1])
\mvee{} (<qmax(I1;J1), qmin(I2;J2)> = [I2])
\mvee{} (<qmax(I1;J1), qmin(I2;J2)> = <I1, I2>)
9. (<qmax(I1;J1), qmin(I2;J2)> = [J1])
\mvee{} (<qmax(I1;J1), qmin(I2;J2)> = [J2])
\mvee{} (<qmax(I1;J1), qmin(I2;J2)> = <J1, J2>)
\mvdash{} (<I1, I2> = <J1, J2>) \mvee{} (I2 = J1) \mvee{} (J2 = I1)
By
Latex:
(All (Unfold `rat-point-interval`)
THEN SplitOrHyps
THEN \mforall{}h:hyp. (EqHD h THENA Auto)
THEN All Reduce)
Home
Index