Nuprl Lemma : compatible-rat-intervals-iff

I,J:ℚInterval.
  ((↑Inhabited(I))
   (↑Inhabited(J))
   (↑Inhabited(I ⋂ J))
   (I ⋂ J ≤ I ∧ I ⋂ J ≤ ⇐⇒ (I J ∈ ℚInterval) ∨ ((snd(I)) (fst(J)) ∈ ℚ) ∨ ((snd(J)) (fst(I)) ∈ ℚ)))


Proof




Definitions occuring in Statement :  rat-interval-intersection: I ⋂ J inhabited-rat-interval: Inhabited(I) rat-interval-face: I ≤ J rational-interval: Interval rationals: assert: b pi1: fst(t) pi2: snd(t) all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  assert: b bnot: ¬bb exists: x:A. B[x] it: unit: Unit bool: 𝔹 squash: T true: True qmax: qmax(x;y) bfalse: ff btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) sq_type: SQType(T) false: False not: ¬A qmin: qmin(x;y) top: Top so_apply: x[s] so_lambda: λ2x.t[x] rat-point-interval: [a] guard: {T} uimplies: supposing a prop: rev_implies:  Q subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T or: P ∨ Q and: P ∧ Q iff: ⇐⇒ Q implies:  Q rat-interval-face: I ≤ J pi1: fst(t) pi2: snd(t) inhabited-rat-interval: Inhabited(I) rat-interval-intersection: I ⋂ J rational-interval: Interval all: x:A. B[x]
Lemmas referenced :  qle_antisymmetry assert-bnot bool_cases_sqequal qmin-idempotent qmax-idempotent istype-universe true_wf squash_wf equal_wf qle_weakening_eq_qorder qle_transitivity_qorder subtype_rel_self assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases not_wf bnot_wf assert_wf istype-void pi1_wf_top rationals_wf pi2_wf rational-interval_wf q_le_wf istype-assert iff_weakening_equal assert-q_le-eq qle_wf rat-point-interval_wf qmin_wf qmax_wf
Rules used in proof :  unionEquality dependent_pairFormation_alt equalityElimination hyp_replacement promote_hyp baseClosed imageMemberEquality universeEquality imageElimination natural_numberEquality cumulativity instantiate dependent_functionElimination functionIsType inlFormation_alt inrFormation_alt voidElimination isect_memberEquality_alt lambdaEquality_alt applyLambdaEquality unionElimination independent_isectElimination equalitySymmetry equalityTransitivity independent_functionElimination universeIsType inhabitedIsType applyEquality hypothesis hypothesisEquality isectElimination extract_by_obid introduction independent_pairEquality because_Cache equalityIstype unionIsType productIsType independent_pairFormation cut sqequalRule thin productElimination sqequalHypSubstitution lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}I,J:\mBbbQ{}Interval.
    ((\muparrow{}Inhabited(I))
    {}\mRightarrow{}  (\muparrow{}Inhabited(J))
    {}\mRightarrow{}  (\muparrow{}Inhabited(I  \mcap{}  J))
    {}\mRightarrow{}  (I  \mcap{}  J  \mleq{}  I  \mwedge{}  I  \mcap{}  J  \mleq{}  J  \mLeftarrow{}{}\mRightarrow{}  (I  =  J)  \mvee{}  ((snd(I))  =  (fst(J)))  \mvee{}  ((snd(J))  =  (fst(I)))))



Date html generated: 2019_10_29-AM-07_53_56
Last ObjectModification: 2019_10_19-AM-01_36_30

Theory : rationals


Home Index