Nuprl Lemma : qmin-idempotent

[q:ℚ]. (qmin(q;q) q ∈ ℚ)


Proof




Definitions occuring in Statement :  qmin: qmin(x;y) rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  guard: {T} rev_implies:  Q iff: ⇐⇒ Q bfalse: ff ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 all: x:A. B[x] false: False implies:  Q not: ¬A prop: member: t ∈ T qmin: qmin(x;y) uall: [x:A]. B[x]
Lemmas referenced :  iff_weakening_equal assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert-q_le-eq eqtt_to_assert uiff_transitivity2 istype-void istype-assert not_wf bnot_wf qle_wf assert_wf bool_wf equal-wf-T-base q_le_wf rationals_wf
Rules used in proof :  dependent_functionElimination equalityIstype voidElimination independent_pairFormation independent_isectElimination productElimination independent_functionElimination equalityElimination unionElimination lambdaFormation_alt inhabitedIsType functionIsType sqequalRule because_Cache baseClosed equalitySymmetry equalityTransitivity hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction universeIsType hypothesis cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[q:\mBbbQ{}].  (qmin(q;q)  =  q)



Date html generated: 2019_10_29-AM-07_43_41
Last ObjectModification: 2019_10_18-PM-00_56_48

Theory : rationals


Home Index