Nuprl Lemma : qmin-idempotent
∀[q:ℚ]. (qmin(q;q) = q ∈ ℚ)
Proof
Definitions occuring in Statement : 
qmin: qmin(x;y)
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
member: t ∈ T
, 
qmin: qmin(x;y)
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
iff_weakening_equal, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert-q_le-eq, 
eqtt_to_assert, 
uiff_transitivity2, 
istype-void, 
istype-assert, 
not_wf, 
bnot_wf, 
qle_wf, 
assert_wf, 
bool_wf, 
equal-wf-T-base, 
q_le_wf, 
rationals_wf
Rules used in proof : 
dependent_functionElimination, 
equalityIstype, 
voidElimination, 
independent_pairFormation, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
functionIsType, 
sqequalRule, 
because_Cache, 
baseClosed, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
universeIsType, 
hypothesis, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[q:\mBbbQ{}].  (qmin(q;q)  =  q)
Date html generated:
2019_10_29-AM-07_43_41
Last ObjectModification:
2019_10_18-PM-00_56_48
Theory : rationals
Home
Index