Nuprl Lemma : qle_weakening_eq_qorder

[a,b:ℚ].  a ≤ supposing b ∈ ℚ


Proof




Definitions occuring in Statement :  qle: r ≤ s rationals: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) qle: r ≤ s
Lemmas referenced :  grp_leq_weakening_eq qadd_grp_wf2 ocmon_subtype_omon ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf omon_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}[a,b:\mBbbQ{}].    a  \mleq{}  b  supposing  a  =  b



Date html generated: 2020_05_20-AM-09_14_45
Last ObjectModification: 2020_02_03-PM-02_18_37

Theory : rationals


Home Index