Nuprl Lemma : decidable__equal_rationals

r,s:ℚ.  Dec(r s ∈ ℚ)


Proof




Definitions occuring in Statement :  rationals: decidable: Dec(P) all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q exposed-btrue: exposed-btrue bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q prop: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] top: Top
Lemmas referenced :  rationals_wf qeq_wf2 bool_wf eqtt_to_assert assert-qeq it_wf subtype_rel_union unit_wf2 equal_wf not_wf equal_subtype equal-wf-base eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot top_wf subtype_rel_dep_function false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction cut extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule inlEquality voidEquality applyEquality intEquality natural_numberEquality because_Cache baseClosed lambdaEquality voidElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination inrEquality functionEquality isect_memberEquality

Latex:
\mforall{}r,s:\mBbbQ{}.    Dec(r  =  s)



Date html generated: 2018_05_21-PM-11_52_09
Last ObjectModification: 2017_07_26-PM-06_44_53

Theory : rationals


Home Index