Nuprl Lemma : decidable__equal_rationals
∀r,s:ℚ.  Dec(r = s ∈ ℚ)
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exposed-btrue: exposed-btrue
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
Lemmas referenced : 
rationals_wf, 
qeq_wf2, 
bool_wf, 
eqtt_to_assert, 
assert-qeq, 
it_wf, 
subtype_rel_union, 
unit_wf2, 
equal_wf, 
not_wf, 
equal_subtype, 
equal-wf-base, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
top_wf, 
subtype_rel_dep_function, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
cut, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
inlEquality, 
voidEquality, 
applyEquality, 
intEquality, 
natural_numberEquality, 
because_Cache, 
baseClosed, 
lambdaEquality, 
voidElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
inrEquality, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}r,s:\mBbbQ{}.    Dec(r  =  s)
Date html generated:
2018_05_21-PM-11_52_09
Last ObjectModification:
2017_07_26-PM-06_44_53
Theory : rationals
Home
Index