Nuprl Lemma : int-eq-in-rationals
∀[x,y:ℤ].  uiff(x = y ∈ ℚ;x = y ∈ ℤ)
Proof
Definitions occuring in Statement : 
rationals: ℚ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
implies: P ⇒ Q, 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
ifthenelse: if b then t else f fi , 
btrue: tt
Lemmas referenced : 
equal_wf, 
rationals_wf, 
int-subtype-rationals, 
equal_functionality_wrt_subtype_rel2, 
assert-qeq, 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce, 
isintReduceTrue
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  =  y;x  =  y)
Date html generated:
2016_05_15-PM-10_39_14
Last ObjectModification:
2015_12_27-PM-07_59_21
Theory : rationals
Home
Index