Step
*
2
1
2
1
1
1
2
of Lemma
int-with-rational-square-root
1. n : ℤ
2. q : ℚ
3. (q * q) = n ∈ ℚ
4. m : ℤ
5. d : ℕ+
6. (n * d * d) = (m * m) ∈ ℤ
7. CoPrime(m,d)
8. ∀p:ℤ. (prime(p)
⇒ (¬(p | d)))
9. ¬(d = 1 ∈ ℕ+)
10. u : {m:{2...}| prime(m)}
11. v : {m:{2...}| prime(m)} List
12. d = Π([u / v]) ∈ ℤ
⊢ d = 1 ∈ ℕ+
BY
{ (D (-3) THEN InstHyp [⌜u⌝] 8⋅ THEN Auto) }
1
1. n : ℤ
2. q : ℚ
3. (q * q) = n ∈ ℚ
4. m : ℤ
5. d : ℕ+
6. (n * d * d) = (m * m) ∈ ℤ
7. CoPrime(m,d)
8. ∀p:ℤ. (prime(p)
⇒ (¬(p | d)))
9. ¬(d = 1 ∈ ℕ+)
10. u : {2...}
11. prime(u)
12. v : {m:{2...}| prime(m)} List
13. d = Π([u / v]) ∈ ℤ
14. ¬(u | d)
⊢ d = 1 ∈ ℕ+
Latex:
Latex:
1. n : \mBbbZ{}
2. q : \mBbbQ{}
3. (q * q) = n
4. m : \mBbbZ{}
5. d : \mBbbN{}\msupplus{}
6. (n * d * d) = (m * m)
7. CoPrime(m,d)
8. \mforall{}p:\mBbbZ{}. (prime(p) {}\mRightarrow{} (\mneg{}(p | d)))
9. \mneg{}(d = 1)
10. u : \{m:\{2...\}| prime(m)\}
11. v : \{m:\{2...\}| prime(m)\} List
12. d = \mPi{}([u / v])
\mvdash{} d = 1
By
Latex:
(D (-3) THEN InstHyp [\mkleeneopen{}u\mkleeneclose{}] 8\mcdot{} THEN Auto)
Home
Index