Step
*
1
1
of Lemma
member-face-complex
1. k : ℕ
2. K : ℚCube(k) List
3. f : ℚCube(k)
4. l : ℚCube(k) List
5. y : ℚCube(k)
6. (y ∈ K)
7. l = if Inhabited(y) then rat-cube-faces(k;y) else [] fi ∈ (ℚCube(k) List)
8. (f ∈ l)
⊢ (y ∈ K) ∧ (↑Inhabited(y)) ∧ (f ∈ rat-cube-faces(k;y))
BY
{ (SplitOnHypITE -2 THENA Auto) }
1
.....truecase.....
1. k : ℕ
2. K : ℚCube(k) List
3. f : ℚCube(k)
4. l : ℚCube(k) List
5. y : ℚCube(k)
6. (y ∈ K)
7. l = rat-cube-faces(k;y) ∈ (ℚCube(k) List)
8. (f ∈ l)
9. ↑Inhabited(y)
⊢ (y ∈ K) ∧ (↑Inhabited(y)) ∧ (f ∈ rat-cube-faces(k;y))
2
.....falsecase.....
1. k : ℕ
2. K : ℚCube(k) List
3. f : ℚCube(k)
4. l : ℚCube(k) List
5. y : ℚCube(k)
6. (y ∈ K)
7. l = [] ∈ (ℚCube(k) List)
8. (f ∈ l)
9. ¬↑Inhabited(y)
⊢ (y ∈ K) ∧ (↑Inhabited(y)) ∧ (f ∈ rat-cube-faces(k;y))
Latex:
Latex:
1. k : \mBbbN{}
2. K : \mBbbQ{}Cube(k) List
3. f : \mBbbQ{}Cube(k)
4. l : \mBbbQ{}Cube(k) List
5. y : \mBbbQ{}Cube(k)
6. (y \mmember{} K)
7. l = if Inhabited(y) then rat-cube-faces(k;y) else [] fi
8. (f \mmember{} l)
\mvdash{} (y \mmember{} K) \mwedge{} (\muparrow{}Inhabited(y)) \mwedge{} (f \mmember{} rat-cube-faces(k;y))
By
Latex:
(SplitOnHypITE -2 THENA Auto)
Home
Index