Step
*
2
1
1
1
1
1
2
of Lemma
qabs-qinv
1. s : ℚ
2. ¬(s = 0 ∈ ℚ)
3. p : ℤ
4. ¬0 < p
5. q : ℤ
6. 0 < q
7. ¬(q = 0 ∈ ℚ)
8. s = (p/q) ∈ ℚ
9. ¬↑qeq(q;0)
10. ¬((p/q) = 0 ∈ ℚ)
11. ¬(|(p/q)| = 0 ∈ ℚ)
12. 0 < q
⊢ <(-1) * q, p>
= let r' ⟵ if p <z 0 ∧b ff then <p, q> else <(-1) * p, q> fi
in if isint(r') then <1, r'> else let p,q = r' in <q, p> fi
∈ ℚ
BY
{ Assert ⌜<(-1) * q, p> = <q, (-1) * p> ∈ ℚ⌝⋅ }
1
.....assertion.....
1. s : ℚ
2. ¬(s = 0 ∈ ℚ)
3. p : ℤ
4. ¬0 < p
5. q : ℤ
6. 0 < q
7. ¬(q = 0 ∈ ℚ)
8. s = (p/q) ∈ ℚ
9. ¬↑qeq(q;0)
10. ¬((p/q) = 0 ∈ ℚ)
11. ¬(|(p/q)| = 0 ∈ ℚ)
12. 0 < q
⊢ <(-1) * q, p> = <q, (-1) * p> ∈ ℚ
2
1. s : ℚ
2. ¬(s = 0 ∈ ℚ)
3. p : ℤ
4. ¬0 < p
5. q : ℤ
6. 0 < q
7. ¬(q = 0 ∈ ℚ)
8. s = (p/q) ∈ ℚ
9. ¬↑qeq(q;0)
10. ¬((p/q) = 0 ∈ ℚ)
11. ¬(|(p/q)| = 0 ∈ ℚ)
12. 0 < q
13. <(-1) * q, p> = <q, (-1) * p> ∈ ℚ
⊢ <(-1) * q, p>
= let r' ⟵ if p <z 0 ∧b ff then <p, q> else <(-1) * p, q> fi
in if isint(r') then <1, r'> else let p,q = r' in <q, p> fi
∈ ℚ
Latex:
Latex:
1. s : \mBbbQ{}
2. \mneg{}(s = 0)
3. p : \mBbbZ{}
4. \mneg{}0 < p
5. q : \mBbbZ{}
6. 0 < q
7. \mneg{}(q = 0)
8. s = (p/q)
9. \mneg{}\muparrow{}qeq(q;0)
10. \mneg{}((p/q) = 0)
11. \mneg{}(|(p/q)| = 0)
12. 0 < q
\mvdash{} <(-1) * q, p>
= let r' \mleftarrow{}{} if p <z 0 \mwedge{}\msubb{} ff then <p, q> else <(-1) * p, q> fi
in if isint(r') then ə, r'> else let p,q = r' in <q, p> fi
By
Latex:
Assert \mkleeneopen{}<(-1) * q, p> = <q, (-1) * p>\mkleeneclose{}\mcdot{}
Home
Index