Nuprl Lemma : qabs-qinv
∀[s:{s:ℚ| ¬(s = 0 ∈ ℚ)} ]. (|1/s| = 1/|s| ∈ ℚ)
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qinv: 1/r, 
rationals: ℚ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
set: {x:A| B[x]} , 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
false: False, 
prop: ℙ, 
cand: A c∧ B, 
and: P ∧ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
nat_plus: ℕ+, 
iff: P ⇐⇒ Q, 
qabs: |r|, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
qdiv: (r/s), 
qmul: r * s, 
qpositive: qpositive(r), 
qinv: 1/r, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bfalse: ff, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
band: p ∧b q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
bor: p ∨bq, 
mk-rational: mk-rational(a;b), 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
squash: ↓T
Lemmas referenced : 
rationals_wf, 
int-subtype-rationals, 
istype-void, 
qabs_wf, 
equal-wf-T-base, 
qabs-zero, 
q-elim, 
nat_plus_properties, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
equal-wf-base, 
int_subtype_base, 
assert-qeq, 
istype-assert, 
not_wf, 
equal_wf, 
qinv_wf, 
valueall-type-has-valueall, 
rationals-valueall-type, 
evalall-reduce, 
int-valueall-type, 
product-valueall-type, 
mul-one, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
istype-less_than, 
intformnot_wf, 
int_formula_prop_not_lemma, 
mk-rational_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
nequal_wf, 
mk-rational-qdiv, 
decidable__equal_int, 
qmul-preserves-eq, 
qdiv_wf, 
qmul_wf, 
squash_wf, 
true_wf, 
istype-universe, 
qmul_zero_qrng, 
subtype_rel_self, 
qmul-qdiv-cancel, 
iff_weakening_equal, 
int-equal-in-rationals, 
qmul-mul, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
qmul_over_minus_qrng, 
qmul_assoc, 
qmul_one_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
hypothesis, 
setIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalRule, 
functionIsType, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
thin, 
sqequalHypSubstitution, 
independent_pairFormation, 
because_Cache, 
baseClosed, 
isectElimination, 
voidElimination, 
independent_functionElimination, 
lambdaFormation, 
rename, 
setElimination, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
lambdaFormation_alt, 
closedConclusion, 
baseApply, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
hyp_replacement, 
applyLambdaEquality, 
functionEquality, 
callbyvalueReduce, 
sqleReflexivity, 
isintReduceTrue, 
minusEquality, 
intEquality, 
productEquality, 
lambdaEquality_alt, 
independent_pairEquality, 
unionElimination, 
equalityElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
promote_hyp, 
instantiate, 
cumulativity, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[s:\{s:\mBbbQ{}|  \mneg{}(s  =  0)\}  ].  (|1/s|  =  1/|s|)
Date html generated:
2020_05_20-AM-09_16_25
Last ObjectModification:
2019_12_31-PM-06_30_43
Theory : rationals
Home
Index