Nuprl Lemma : qabs-zero
∀[r:ℚ]. uiff(r = 0 ∈ ℚ;|r| = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qabs: |r|, 
rationals: ℚ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
qabs: |r|, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
qpositive: qpositive(r), 
btrue: tt, 
lt_int: i <z j, 
bfalse: ff, 
qmul: r * s, 
subtype_rel: A ⊆r B, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
all: ∀x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
equal-wf-T-base, 
rationals_wf, 
qabs_wf, 
int-subtype-rationals, 
valueall-type-has-valueall, 
rationals-valueall-type, 
evalall-reduce, 
qpositive_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
squash_wf, 
true_wf, 
qinv_inv_q, 
iff_weakening_equal, 
qinv_id_q, 
qmul_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
baseClosed, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
applyEquality, 
hyp_replacement, 
applyLambdaEquality, 
independent_isectElimination, 
callbyvalueReduce, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
minusEquality
Latex:
\mforall{}[r:\mBbbQ{}].  uiff(r  =  0;|r|  =  0)
Date html generated:
2018_05_21-PM-11_51_41
Last ObjectModification:
2017_07_26-PM-06_44_38
Theory : rationals
Home
Index