Nuprl Lemma : qabs-zero

[r:ℚ]. uiff(r 0 ∈ ℚ;|r| 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: qabs: |r| callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  qpositive: qpositive(r) btrue: tt lt_int: i <j bfalse: ff qmul: s subtype_rel: A ⊆B has-value: (a)↓ has-valueall: has-valueall(a) all: x:A. B[x] or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal-wf-T-base rationals_wf qabs_wf int-subtype-rationals valueall-type-has-valueall rationals-valueall-type evalall-reduce qpositive_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot equal_wf squash_wf true_wf qinv_inv_q iff_weakening_equal qinv_id_q qmul_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality baseClosed because_Cache sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality applyEquality hyp_replacement applyLambdaEquality independent_isectElimination callbyvalueReduce dependent_functionElimination unionElimination instantiate cumulativity independent_functionElimination lambdaEquality imageElimination universeEquality imageMemberEquality minusEquality

Latex:
\mforall{}[r:\mBbbQ{}].  uiff(r  =  0;|r|  =  0)



Date html generated: 2018_05_21-PM-11_51_41
Last ObjectModification: 2017_07_26-PM-06_44_38

Theory : rationals


Home Index