Step
*
2
1
1
1
of Lemma
qabs-qsum-qle
.....subterm..... T:t
1:n
1. ∀n:ℕ. ∀[E:ℕn ⟶ ℚ]. ∀[x:ℚ]. |Σ0 ≤ j < n. E[j]| ≤ (n * x) supposing ∀j:ℕn. (|E[j]| ≤ x)
2. a : ℤ
3. b : ℤ
4. E : {a..b-} ⟶ ℚ
5. x : ℚ
6. a ≤ b
7. ∀j:ℤ. ((a ≤ j)
⇒ j < b
⇒ (|E[j]| ≤ x))
8. |Σ0 ≤ j < b - a. E[a + j]| ≤ ((b - a) * x)
⊢ Σa ≤ j < b. E[j] = Σ0 ≤ j < b - a. E[a + j] ∈ ℚ
BY
{ (InstLemma `sum_shift_q` [⌜a⌝;⌜b⌝;⌜E⌝;⌜-a⌝]⋅ THENA Auto) }
1
1. ∀n:ℕ. ∀[E:ℕn ⟶ ℚ]. ∀[x:ℚ]. |Σ0 ≤ j < n. E[j]| ≤ (n * x) supposing ∀j:ℕn. (|E[j]| ≤ x)
2. a : ℤ
3. b : ℤ
4. E : {a..b-} ⟶ ℚ
5. x : ℚ
6. a ≤ b
7. ∀j:ℤ. ((a ≤ j)
⇒ j < b
⇒ (|E[j]| ≤ x))
8. |Σ0 ≤ j < b - a. E[a + j]| ≤ ((b - a) * x)
9. Σa ≤ j < b. E[j] = Σa + (-a) ≤ j < b + (-a). E[j - -a] ∈ ℚ
⊢ Σa ≤ j < b. E[j] = Σ0 ≤ j < b - a. E[a + j] ∈ ℚ
Latex:
Latex:
.....subterm..... T:t
1:n
1. \mforall{}n:\mBbbN{}. \mforall{}[E:\mBbbN{}n {}\mrightarrow{} \mBbbQ{}]. \mforall{}[x:\mBbbQ{}]. |\mSigma{}0 \mleq{} j < n. E[j]| \mleq{} (n * x) supposing \mforall{}j:\mBbbN{}n. (|E[j]| \mleq{} x)
2. a : \mBbbZ{}
3. b : \mBbbZ{}
4. E : \{a..b\msupminus{}\} {}\mrightarrow{} \mBbbQ{}
5. x : \mBbbQ{}
6. a \mleq{} b
7. \mforall{}j:\mBbbZ{}. ((a \mleq{} j) {}\mRightarrow{} j < b {}\mRightarrow{} (|E[j]| \mleq{} x))
8. |\mSigma{}0 \mleq{} j < b - a. E[a + j]| \mleq{} ((b - a) * x)
\mvdash{} \mSigma{}a \mleq{} j < b. E[j] = \mSigma{}0 \mleq{} j < b - a. E[a + j]
By
Latex:
(InstLemma `sum\_shift\_q` [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}E\mkleeneclose{};\mkleeneopen{}-a\mkleeneclose{}]\mcdot{} THENA Auto)
Home
Index