Nuprl Lemma : qabs-qsum-qle
∀[a,b:ℤ]. ∀[E:{a..b-} ⟶ ℚ]. ∀[x:ℚ].
  |Σa ≤ j < b. E[j]| ≤ ((b - a) * x) supposing (a ≤ b) ∧ (∀j:ℤ. ((a ≤ j) ⇒ j < b ⇒ (|E[j]| ≤ x)))
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j], 
qabs: |r|, 
qle: r ≤ s, 
qmul: r * s, 
rationals: ℚ, 
int_seg: {i..j-}, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
subtract: n - m, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
true: True, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
qabs: |r|, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
qpositive: qpositive(r), 
btrue: tt, 
lt_int: i <z j, 
bfalse: ff, 
qmul: r * s, 
qle: r ≤ s, 
grp_leq: a ≤ b, 
assert: ↑b, 
infix_ap: x f y, 
grp_le: ≤b, 
pi1: fst(t), 
pi2: snd(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
bor: p ∨bq, 
qsub: r - s, 
qadd: r + s, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
le: A ≤ B, 
less_than': less_than'(a;b), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
rev_uimplies: rev_uimplies(P;Q), 
qge: a ≥ b, 
uiff: uiff(P;Q), 
subtract: n - m
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
qle_witness, 
qabs_wf, 
qsum_wf, 
int_seg_wf, 
qmul_wf, 
int-subtype-rationals, 
all_wf, 
qle_wf, 
rationals_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
squash_wf, 
true_wf, 
sum_unroll_base_q, 
iff_weakening_equal, 
qmul_zero_qrng, 
sum_unroll_hi_q, 
subtype_rel_dep_function, 
int_seg_subtype, 
false_wf, 
subtype_rel_self, 
decidable__lt, 
lelt_wf, 
qadd_wf, 
qle_functionality_wrt_implies, 
qle_transitivity_qorder, 
q-triangle-inequality, 
qadd_functionality_wrt_qle, 
qle_weakening_eq_qorder, 
subtract-add-cancel, 
qadd-add, 
qmul_over_plus_qrng, 
qmul_one_qrng, 
le_wf, 
add-member-int_seg1, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
sum_shift_q, 
equal_wf, 
decidable__equal_int, 
intformeq_wf, 
itermMinus_wf, 
int_formula_prop_eq_lemma, 
int_term_value_minus_lemma, 
minus-minus, 
add-commutes
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberFormation, 
because_Cache, 
unionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
dependent_set_memberEquality, 
addEquality, 
productEquality, 
minusEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[x:\mBbbQ{}].
    |\mSigma{}a  \mleq{}  j  <  b.  E[j]|  \mleq{}  ((b  -  a)  *  x)  supposing  (a  \mleq{}  b)  \mwedge{}  (\mforall{}j:\mBbbZ{}.  ((a  \mleq{}  j)  {}\mRightarrow{}  j  <  b  {}\mRightarrow{}  (|E[j]|  \mleq{}  x)))
Date html generated:
2018_05_22-AM-00_26_20
Last ObjectModification:
2017_07_26-PM-06_56_18
Theory : rationals
Home
Index