Nuprl Lemma : q-triangle-inequality
∀[r,s:ℚ].  (|r + s| ≤ (|r| + |s|))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qle: r ≤ s, 
qadd: r + s, 
rationals: ℚ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
qabs: |r|, 
uimplies: b supposing a, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
false: False, 
squash: ↓T, 
and: P ∧ Q, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_exists: ∃x:A [B[x]], 
isl: isl(x), 
bnot: ¬bb, 
assert: ↑b, 
q-constraints: q-constraints(k;A;y), 
top: Top, 
cand: A c∧ B, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
sq_type: SQType(T), 
select: L[n], 
cons: [a / b], 
pi2: snd(t), 
pi1: fst(t), 
q-rel: q-rel(r;x), 
eq_int: (i =z j), 
nat_plus: ℕ+, 
less_than: a < b, 
subtract: n - m, 
select?: as[i]?a, 
lt_int: i <z j, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
rev_uimplies: rev_uimplies(P;Q), 
qadd: r + s, 
evalall: evalall(t)
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
qadd_wf, 
evalall-reduce, 
qle_witness, 
qabs_wf, 
qpositive_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
qless_wf, 
int-subtype-rationals, 
qle_reflexivity, 
bnot_wf, 
not_wf, 
decidable__qle, 
qmul_wf, 
qle_wf, 
squash_wf, 
true_wf, 
qmul_over_plus_qrng, 
subtype_rel_self, 
iff_weakening_equal, 
uiff_transitivity, 
eqtt_to_assert, 
assert-qpositive, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
decidable__q-constraints-opt, 
false_wf, 
le_wf, 
cons_wf, 
nat_wf, 
select?_wf, 
nil_wf, 
outr_wf, 
sq_exists_wf, 
list_wf, 
q-constraints_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
q-linear-unroll, 
less_than_wf, 
q-linear-base, 
int_seg_subtype, 
int_seg_cases, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
qadd_preserves_qless, 
mon_ident_q, 
qadd_preserves_qle, 
qless_complement_qorder, 
qle_complement_qorder, 
qmul_one_qrng, 
mon_assoc_q, 
qadd_comm_q, 
qmul_zero_qrng, 
qinverse_q, 
qadd_ac_1_q, 
q_distrib, 
qadd_inv_assoc_q, 
qmul_ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
natural_numberEquality, 
applyEquality, 
dependent_functionElimination, 
minusEquality, 
unionElimination, 
voidElimination, 
lambdaEquality, 
imageElimination, 
productElimination, 
imageMemberEquality, 
instantiate, 
universeEquality, 
lambdaFormation, 
equalityElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_set_memberEquality, 
productEquality, 
functionEquality, 
intEquality, 
independent_pairEquality, 
computeAll, 
dependent_set_memberFormation, 
voidEquality, 
setElimination, 
rename, 
cumulativity, 
hypothesis_subsumption, 
addEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality
Latex:
\mforall{}[r,s:\mBbbQ{}].    (|r  +  s|  \mleq{}  (|r|  +  |s|))
Date html generated:
2018_05_22-AM-00_25_59
Last ObjectModification:
2018_05_19-PM-04_08_06
Theory : rationals
Home
Index