Nuprl Lemma : assert-qpositive
∀[r:ℚ]. uiff(↑qpositive(r);0 < r)
Proof
Definitions occuring in Statement : 
qless: r < s, 
qpositive: qpositive(r), 
rationals: ℚ, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
nat_plus: ℕ+, 
cand: A c∧ B, 
not: ¬A, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
prop: ℙ, 
qless: r < s, 
qpositive: qpositive(r), 
grp_lt: a < b, 
set_lt: a <p b, 
set_blt: a <b b, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_le: ≤b, 
pi2: snd(t), 
qadd_grp: <ℚ+>, 
grp_le: ≤b, 
pi1: fst(t), 
infix_ap: x f y, 
q_le: q_le(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
qeq: qeq(r;s), 
qsub: r - s, 
qmul: r * s, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
qadd: r + s, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
bfalse: ff, 
uiff: uiff(P;Q), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
band: p ∧b q, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
bor: p ∨bq, 
true: True
Lemmas referenced : 
q-elim, 
nat_plus_properties, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
int-subtype-rationals, 
equal-wf-base, 
rationals_wf, 
int_subtype_base, 
assert-qeq, 
istype-assert, 
qdiv-int-elim, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
nequal_wf, 
valueall-type-has-valueall, 
product-valueall-type, 
int-valueall-type, 
evalall-reduce, 
uiff_wf, 
qpositive_wf, 
qless_wf, 
qless_witness, 
assert_witness, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-less_than, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
istype-true, 
istype-void, 
zero-mul, 
add-zero, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
hypothesis, 
setElimination, 
rename, 
lambdaFormation_alt, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
closedConclusion, 
natural_numberEquality, 
baseClosed, 
because_Cache, 
dependent_set_memberEquality_alt, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
equalityIstype, 
inhabitedIsType, 
sqequalBase, 
equalitySymmetry, 
intEquality, 
callbyvalueReduce, 
sqleReflexivity, 
isintReduceTrue, 
minusEquality, 
productEquality, 
independent_pairEquality, 
addEquality, 
multiplyEquality, 
hyp_replacement, 
applyLambdaEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
promote_hyp, 
instantiate, 
cumulativity, 
axiomEquality
Latex:
\mforall{}[r:\mBbbQ{}].  uiff(\muparrow{}qpositive(r);0  <  r)
Date html generated:
2020_05_20-AM-09_15_47
Last ObjectModification:
2020_01_31-AM-10_36_03
Theory : rationals
Home
Index