Nuprl Lemma : qless_witness

[r,s:ℚ].  (r <  (Ax ∈ r < s))


Proof




Definitions occuring in Statement :  qless: r < s rationals: uall: [x:A]. B[x] implies:  Q member: t ∈ T axiom: Ax
Definitions unfolded in proof :  qless: r < s uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: subtype_rel: A ⊆B ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) grp_lt: a < b set_lt: a <b oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p|
Lemmas referenced :  grp_lt_wf qadd_grp_wf2 ocgrp_wf rationals_wf assert_witness set_blt_wf oset_of_ocmon_wf0
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis lemma_by_obid isectElimination thin applyEquality lambdaEquality setElimination rename hypothesisEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache isect_memberEquality independent_functionElimination

Latex:
\mforall{}[r,s:\mBbbQ{}].    (r  <  s  {}\mRightarrow{}  (Ax  \mmember{}  r  <  s))



Date html generated: 2016_05_15-PM-10_45_07
Last ObjectModification: 2015_12_27-PM-07_53_50

Theory : rationals


Home Index