Nuprl Lemma : decidable__q-constraints-opt
∀k:ℕ. ∀A:(ℕ ⟶ ℚ × ℤ) List.  Dec(∃y:ℚ List [q-constraints(k;A;y)])
Proof
Definitions occuring in Statement : 
q-constraints: q-constraints(k;A;y), 
rationals: ℚ, 
list: T List, 
nat: ℕ, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T, 
pi2: snd(t), 
pi1: fst(t), 
it: ⋅, 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
qsub: r - s, 
product-map: product-map(F;as;bs), 
normalize-constraints: normalize-constraints(k;A), 
callbyvalueall: callbyvalueall, 
normalize-constraint: normalize-constraint(k;p), 
upto: upto(n), 
select?: as[i]?a, 
lt_int: i <z j, 
btrue: tt, 
bfalse: ff, 
mapfilter: mapfilter(f;P;L), 
qmin-list: qmin-list(L), 
combine-list: combine-list(x,y.f[x; y];L), 
qmin: qmin(x;y), 
q_le: q_le(r;s), 
experimental: experimental{allFunctionality}(possibleextract), 
eq_int: (i =z j), 
experimental: experimental{orFunctionality}(possibleextract), 
experimental: experimental{impliesFunctionality}(possibleextract), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
qmax: qmax(x;y), 
natrec: natrec, 
genrec: genrec, 
genrec-ap: genrec-ap, 
spreadn: spread4, 
spreadn: spread3, 
ifunion: ifunion(b; t), 
q-constraints-decider: q-constraints-decider, 
decidable__q-constraints, 
decidable__equal_int, 
iff_weakening_equal, 
decidable__l_all-better-extract, 
decidable__q-rel, 
decidable__l_exists_better-extract, 
decidable__cand, 
decidable__not, 
decidable__equal_rationals, 
l_exists_iff, 
product-map, 
member_filter, 
member_append, 
decidable__qless, 
sq_stable__and, 
sq_stable__equal, 
q-min-exists, 
q-max-exists, 
member_map_filter, 
l_all_iff, 
any: any x, 
iff_transitivity, 
iff_weakening_uiff, 
eqtt_to_assert, 
assert_of_band, 
assert_of_eq_int, 
qle_weakening_lt_qorder, 
q-constraint-times, 
bool_cases, 
uiff_transitivity2, 
qadd_preserves_qle, 
qadd_preserves_qless, 
decidable__int_equal, 
decidable__l_all, 
decidable__l_exists, 
decidable__and2, 
decidable__implies, 
decidable__false, 
select_member, 
list-cases, 
l_all_nil, 
qmin-list-member, 
qmin-list-bounds, 
qle_reflexivity, 
qmax-list-member, 
qmax-list-bounds, 
member-map, 
l_member_set2, 
bool_cases_sqequal, 
grp_leq_weakening_lt, 
decidable__and, 
colist-cases, 
combine-list-member, 
combine-list-rel-and, 
qle_transitivity_qorder, 
member_map, 
list_induction, 
cons_member, 
colist-ext, 
member_singleton, 
int_seg_properties, 
l_all_single, 
decidable__le, 
grp_leq_transitivity, 
l_all_cons, 
decidable__assert, 
decidable__less_than'
Lemmas referenced : 
decidable__q-constraints, 
decidable__equal_int, 
iff_weakening_equal, 
decidable__l_all-better-extract, 
decidable__q-rel, 
decidable__l_exists_better-extract, 
decidable__cand, 
decidable__not, 
decidable__equal_rationals, 
l_exists_iff, 
product-map, 
member_filter, 
member_append, 
decidable__qless, 
sq_stable__and, 
sq_stable__equal, 
q-min-exists, 
q-max-exists, 
member_map_filter, 
l_all_iff, 
iff_transitivity, 
iff_weakening_uiff, 
eqtt_to_assert, 
assert_of_band, 
assert_of_eq_int, 
qle_weakening_lt_qorder, 
q-constraint-times, 
bool_cases, 
uiff_transitivity2, 
qadd_preserves_qle, 
qadd_preserves_qless, 
decidable__int_equal, 
decidable__l_all, 
decidable__l_exists, 
decidable__and2, 
decidable__implies, 
decidable__false, 
select_member, 
list-cases, 
l_all_nil, 
qmin-list-member, 
qmin-list-bounds, 
qle_reflexivity, 
qmax-list-member, 
qmax-list-bounds, 
member-map, 
l_member_set2, 
bool_cases_sqequal, 
grp_leq_weakening_lt, 
decidable__and, 
colist-cases, 
combine-list-member, 
combine-list-rel-and, 
qle_transitivity_qorder, 
member_map, 
list_induction, 
cons_member, 
colist-ext, 
member_singleton, 
int_seg_properties, 
l_all_single, 
decidable__le, 
grp_leq_transitivity, 
l_all_cons, 
decidable__assert, 
decidable__less_than'
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}A:(\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{})  List.    Dec(\mexists{}y:\mBbbQ{}  List  [q-constraints(k;A;y)])
Date html generated:
2020_05_20-AM-09_30_43
Last ObjectModification:
2020_01_17-AM-09_48_53
Theory : rationals
Home
Index