Nuprl Lemma : qmin-list-member
∀L:ℚ List. (qmin-list(L) ∈ L) supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
qmin-list: qmin-list(L), 
rationals: ℚ, 
l_member: (x ∈ l), 
length: ||as||, 
list: T List, 
less_than: a < b, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
qmin-list: qmin-list(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
qmin: qmin(x;y), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
or: P ∨ Q, 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
member-less_than, 
length_wf, 
rationals_wf, 
combine-list-member, 
qmin_wf, 
q_le_wf, 
bool_wf, 
eqtt_to_assert, 
equal_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
rename, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
inlFormation, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
because_Cache, 
voidElimination, 
inrFormation
Latex:
\mforall{}L:\mBbbQ{}  List.  (qmin-list(L)  \mmember{}  L)  supposing  0  <  ||L||
Date html generated:
2018_05_21-PM-11_50_22
Last ObjectModification:
2017_07_26-PM-06_44_00
Theory : rationals
Home
Index