Nuprl Lemma : l_member_set2
∀[T:Type]. ∀[P:T ⟶ ℙ].  ∀L:{x:T| P[x]}  List. ∀x:T.  ((x ∈ L) 
⇒ (x ∈ L))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
equal_wf, 
select_member, 
lelt_wf, 
length_wf, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
set_wf, 
l_member_wf, 
and_wf, 
subtype_rel_list, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
dependent_set_memberEquality, 
hypothesis, 
because_Cache, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
sqequalRule, 
dependent_functionElimination, 
setElimination, 
rename, 
independent_pairFormation, 
hyp_replacement, 
Error :applyLambdaEquality, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
universeEquality, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:\{x:T|  P[x]\}    List.  \mforall{}x:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  L))
Date html generated:
2016_10_21-AM-10_03_44
Last ObjectModification:
2016_07_12-AM-05_24_36
Theory : list_1
Home
Index