Nuprl Lemma : l_member_set2

[T:Type]. ∀[P:T ⟶ ℙ].  ∀L:{x:T| P[x]}  List. ∀x:T.  ((x ∈ L)  (x ∈ L))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B member: t ∈ T prop: so_apply: x[s] subtype_rel: A ⊆B nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top so_lambda: λ2x.t[x]
Lemmas referenced :  equal_wf select_member lelt_wf length_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf set_wf l_member_wf and_wf subtype_rel_list list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut dependent_set_memberEquality hypothesis because_Cache introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity equalitySymmetry setEquality cumulativity applyEquality functionExtensionality sqequalRule dependent_functionElimination setElimination rename independent_pairFormation hyp_replacement Error :applyLambdaEquality,  independent_isectElimination natural_numberEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination universeEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:\{x:T|  P[x]\}    List.  \mforall{}x:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  L))



Date html generated: 2016_10_21-AM-10_03_44
Last ObjectModification: 2016_07_12-AM-05_24_36

Theory : list_1


Home Index