Nuprl Lemma : combine-list-rel-and
∀[T:Type]
  ∀f:T ⟶ T ⟶ T. ∀R:T ⟶ T ⟶ ℙ.
    ((∀x,y,z:T.  (R[x;f[y;z]] 
⇐⇒ R[x;y] ∧ R[x;z]))
    
⇒ (∀L:T List. ∀a:T.  R[a;combine-list(x,y.f[x;y];L)] 
⇐⇒ (∀b∈L.R[a;b]) supposing 0 < ||L|| ∧ Assoc(T;λx,y. f[x;y]))\000C)
Proof
Definitions occuring in Statement : 
combine-list: combine-list(x,y.f[x; y];L)
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
assoc: Assoc(T;op)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
guard: {T}
, 
int_seg: {i..j-}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
assoc: Assoc(T;op)
, 
cons: [a / b]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
combine-list: combine-list(x,y.f[x; y];L)
, 
list_accum: list_accum, 
tl: tl(l)
, 
pi2: snd(t)
, 
nil: []
, 
hd: hd(l)
, 
pi1: fst(t)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bfalse: ff
, 
subtract: n - m
, 
cand: A c∧ B
Lemmas referenced : 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
int_seg_subtype, 
false_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
le_wf, 
length_wf, 
non_neg_length, 
nat_properties, 
decidable__lt, 
lelt_wf, 
less_than_wf, 
member-less_than, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
null_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
list_wf, 
eqtt_to_assert, 
assert_of_null, 
combine-list_wf, 
cons_wf, 
length-singleton, 
l_all_single, 
equal_wf, 
l_all_wf, 
nil_wf, 
l_member_wf, 
iff_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
length-nil, 
length_wf_nat, 
nat_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
squash_wf, 
true_wf, 
combine-list-cons, 
iff_weakening_equal, 
l_all_cons, 
assoc_wf, 
all_wf, 
isect_wf, 
set_wf, 
primrec-wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
addLevel, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
levelHypothesis, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
cumulativity, 
imageElimination, 
independent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
promote_hyp, 
equalityElimination, 
baseClosed, 
functionExtensionality, 
imageMemberEquality, 
impliesFunctionality, 
setEquality, 
hyp_replacement, 
addEquality, 
minusEquality, 
universeEquality, 
productEquality, 
functionEquality, 
andLevelFunctionality
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}x,y,z:T.    (R[x;f[y;z]]  \mLeftarrow{}{}\mRightarrow{}  R[x;y]  \mwedge{}  R[x;z]))
        {}\mRightarrow{}  (\mforall{}L:T  List.  \mforall{}a:T.
                    R[a;combine-list(x,y.f[x;y];L)]  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}b\mmember{}L.R[a;b]) 
                    supposing  0  <  ||L||  \mwedge{}  Assoc(T;\mlambda{}x,y.  f[x;y])))
Date html generated:
2017_04_14-AM-09_23_52
Last ObjectModification:
2017_02_27-PM-03_58_59
Theory : list_1
Home
Index