Nuprl Lemma : colist-cases

[T:Type]. ∀x:colist(T). ((x Ax) ∨ (x ∈ T × colist(T)))


Proof




Definitions occuring in Statement :  colist: colist(T) uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q member: t ∈ T product: x:A × B[x] universe: Type sqequal: t axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q all: x:A. B[x] subtype_rel: A ⊆B b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) bfalse: ff btrue: tt it: or: P ∨ Q top: Top
Lemmas referenced :  colist-ext colist_wf pair-sq-axiom-wf istype-void
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination Error :lambdaFormation_alt,  hypothesis_subsumption applyEquality sqequalRule imageElimination unionElimination equalityElimination Error :inlEquality_alt,  axiomSqEquality Error :equalityIsType4,  Error :productIsType,  Error :universeIsType,  because_Cache baseClosed Error :inrEquality_alt,  axiomEquality independent_pairEquality universeEquality Error :isect_memberEquality_alt,  voidElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}x:colist(T).  ((x  \msim{}  Ax)  \mvee{}  (x  \mmember{}  T  \mtimes{}  colist(T)))



Date html generated: 2019_06_20-PM-00_38_32
Last ObjectModification: 2018_10_03-PM-01_54_27

Theory : list_0


Home Index