Step
*
1
2
4
of Lemma
qadd_grp_wf2
1. z : ℚ
⊢ monot(ℚ;x,y.↑q_le(x;y);λw.(z + w))
BY
{ ((RepUR ``monot`` 0 THEN Auto)
THEN (RWO "q_le-elim" (-1) THENA Complete (Auto))
THEN (RW assert_pushdownC (-1) THENA Complete (Auto))
THEN (RWO "q_le-elim" 0 THENA Complete (Auto))
THEN (RW assert_pushdownC 0 THENA Complete (Auto))
THEN (ParallelLast THEN Try (Complete (Auto)))
THEN ((NthHypEq (-1)) THEN RepeatFor 2 ((EqCD THEN Auto)))
THEN QAddReduce 0
THEN Auto) }
Latex:
Latex:
1. z : \mBbbQ{}
\mvdash{} monot(\mBbbQ{};x,y.\muparrow{}q\_le(x;y);\mlambda{}w.(z + w))
By
Latex:
((RepUR ``monot`` 0 THEN Auto)
THEN (RWO "q\_le-elim" (-1) THENA Complete (Auto))
THEN (RW assert\_pushdownC (-1) THENA Complete (Auto))
THEN (RWO "q\_le-elim" 0 THENA Complete (Auto))
THEN (RW assert\_pushdownC 0 THENA Complete (Auto))
THEN (ParallelLast THEN Try (Complete (Auto)))
THEN ((NthHypEq (-1)) THEN RepeatFor 2 ((EqCD THEN Auto)))
THEN QAddReduce 0
THEN Auto)
Home
Index