Nuprl Lemma : qavg-eq-iff-5
∀[a,b,c:ℚ].  uiff(qavg(b;a) = qavg(a;c) ∈ ℚ;b = c ∈ ℚ)
Proof
Definitions occuring in Statement : 
qavg: qavg(a;b), 
rationals: ℚ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
qavg: qavg(a;b), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
not: ¬A, 
implies: P ⇒ Q, 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
eq_int: (i =z j), 
bfalse: ff, 
assert: ↑b, 
false: False, 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
qdiv_wf, 
qadd_wf, 
int-subtype-rationals, 
assert-qeq, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
not_wf, 
equal-wf-T-base, 
rationals_wf, 
qadd_com, 
subtype_rel_self, 
iff_weakening_equal, 
qmul_wf, 
qadd_comm_q, 
qmul-qdiv-cancel, 
qadd_ac_1_q, 
qadd_inv_assoc_q
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
applyEquality, 
independent_isectElimination, 
lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
voidElimination, 
baseClosed, 
sqequalBase, 
because_Cache, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
instantiate, 
universeEquality, 
imageMemberEquality, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
minusEquality, 
applyLambdaEquality
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(qavg(b;a)  =  qavg(a;c);b  =  c)
Date html generated:
2020_05_20-AM-09_16_58
Last ObjectModification:
2020_01_04-PM-10_19_27
Theory : rationals
Home
Index